
	

1	
	

Abstract

Fog	 computing	 brings	 cloud	 computing	 capabilities	
closer	 to	 the	 end-device	 and	 users,	 while	 enabling	
location-dependent	 resource	 allocation,	 low	 latency	
services,	 and	 extending	 significantly	 the	 IoT	 services	
portfolio	as	well	as	market	and	business	opportunities	
in	 the	 cloud	 sector.	 With	 the	 number	 of	 devices	
exponentially	 growing	 globally,	 new	 cloud	 and	 fog	
models	 are	 expected	 to	 emerge,	 paving	 the	way	 for	
shared,	collaborative,	extensible,	mobile,	volatile	and	
dynamic	 compute,	 storage	 and	 network	
infrastructure.	 When	 put	 together,	 cloud	 and	 fog-
computing	create	a	new	stack	of	resources,	which	we	
refer	to	as	Fog-to-Cloud	(F2C),	creating	the	need	for	a	
new,	open	and	coordinated	management	ecosystem.	
The	 mF2C	 proposal	 sets	 the	 goal	 of	 designing	 an	
open,	 secure,	 decentralized,	 multi-stakeholder	
management	 framework,	 including	 novel	
programming	 models,	 privacy	 and	 security,	 data	
storage	 techniques,	 service	 creation,	 brokerage	
solutions,	 SLA	 policies,	 and	 resource	 orchestration	
methods.	This	document	outlines	the	architecture	and	
main	 functionalities	 of	 the	 management	 framework	
designed	in	the	H2020	mF2C	project	to	coordinate	the	
execution	 of	 services	 in	 this	 heterogeneous	 and	
distributed	set	of	resources.	

Introduction
The	emergence	of	IoT	–the	networked	connection	of	
people,	 process,	 data	 and	 things	 –	 is	 expected	 to	
significantly	 increase	 the	 number	 of	 connected	
devices	worldwide,	from	the	billions	of	units	we	have	
today,	 to	 tens	 of	 billions	 of	 units	 expected	 to	 be	
deployed	 in	 the	 coming	 years.	 According	 to	 HIS	 [1]	

there	 were	 27	 billion	 of	 interconnected	 devices	 in	
2017,	while	Cisco	[2]	predicts	50	billion	by	2020.	The	
same	HIS	 report	expects	an	annual	growth	of	a	12%	
until	2030	to	reach	125	billion	of	connected	devices.	
At	 the	 same	 time,	 cloud	 service	 providers	 (Amazon	
AWS,	Google	 Compute	 Engine,	Microsoft	 Azure)	 are	
today	enabling	customers	to	quickly	deploy	a	myriad	
of	 private	 and	 corporate	 services	 at	 comparably	
lower	 prices	 than	 buying	 and	maintaining	 their	 own	
infrastructure.	 When	 combined,	 fog	 and	 cloud	
computing	 are	 undeniably	 setting	 standards	 in	
flexibility,	cost,	economy	of	scale,	but	also	innovation	
in	new	services,	devices	and	applications.	
There	 is	 no	 doubt	 therefore	 that	 any	 future,	
enriched,	 smart	 scenario,	 is	 likely	 to	 deploy	 and	
benefit	from	the	combined	computing	infrastructure,	
be	 it	 cloud,	 fog,	 or	 a	 combination	 of	 both.	 Figure	 1	
shows	how	 today’s	 ecosystem	 integrates	 centralized	
cloud	infrastructure,	with	various	levels	(or	layers)	of	
dispersed	elements	starting	with	smaller	scale	clouds,	
some	fog	computing	capabilities	with	various	degrees	
of	 decision	 making	 and	 data	 processing	 capabilities	
(the	 stack	 of	 resources).	 We	 refer	 to	 the	 scenario	
shown	in	Figure	1	as	a	Fog-to-Cloud	(F2C)	system	[3].	
In	 this	 novel	 computing	 paradigm,	 users	 will	 see	 an	
optimized	service	performance	when	the	service	can	
decide	 on-the-fly	 the	 best	 suited	 set	 of	 fog/cloud	
resources,	 enabling	 enriched	 service	 execution	
features	 to	 upscale	 performance,	 such	 as	 parallel	
execution	 of	 tasks	 and	 computational	 offloading	 on	
the	cloud.	

Towards an Open, Secure,
Decentralized and Coordinated
Fog-to-Cloud Management
Ecosystem (mF2C)	

	

2	
	

The	main	objective	of	 the	mF2C	project	 is	 to	design	
and	 develop	 a	 hierarchical,	 open,	 secure,	
decentralized	and	coordinated	management	platform	
facilitating	 the	 efficient	 usage	 of	 resources,	 taking	
into	 consideration	 service	 requirements	 and	 user	
demands,	 in	 a	 paradigm-shifting	 scenario	 combining	
cloud	and	fog	computing.	
The	 F2C	 collaborative	 and	 coordinated	 computing	
ecosystem	 has	 been	 conceived	 to:	 i)	 efficiently	 and	
transparently	 use	 available	 distributed	 and	
heterogeneous	 resources	 at	 the	 edge;	 ii)	 support	
applications	and	services	that	do	not	fit	well	into	the	
paradigm	 of	 the	 traditional	 centralized	 cloud	 (e.g.,	
low	latency,	fast	handover	and	connectivity	of	mobile	
applications),	 and;	 iii)	pave	 the	way	 to	new	business	
models	 in	 both	 cloud	 and	 smart	 devices	 sectors.	
Security	 and	 privacy	 are	 also	 addressed	 in	 a	
transversal	 fashion	 in	 F2C	 systems.	 The	 highly	
necessary	 features	 of	 security	 and	 privacy,	
throughout	both	cloud	and	fog,	make	the	F2C	system	
a	 highly	 interesting	 subject	 of	 future	 research	 and	
innovation.	Last	but	not	least,	despite	fog’s	potential,	
many	 devices	 are	 likely	 to	 suffer	 from	 resource	
constraints	 (limited	 storage,	 battery,	 compute	
power),	which	 can	 lead	 to	 inability	 to	 satisfy	 service	
level	 agreements.	 Hence,	 a	 critical	 question	 here	 is	
how	 collaborative	 scenarios,	 based	 on	 resource	
sharing	 and	 clustering,	 can	 extend	 the	 concept	 of	
cloud	provider	to	an	unknown	frontier.	
In	 this	 whitepaper,	 we	 outline	 the	 main	
functionalities	 of	 the	mF2C	management	 framework	
to	 being	 developed	 in	 the	 mF2C	 project.	 This	
framework	will	manage	the	execution	of	applications	
and	 services	 in	 a	 coordinated	 way	 in	 this	 new	
computing	ecosystem.	

Challenges for an open and
coordinated management of
fog and cloud computing
systems
The	main	objective	of	 the	mF2C	project	 is	 to	design	
and	 develop	 a	 hierarchical,	 open,	 secure,	
decentralized	and	coordinated	management	platform	
facilitating	 the	 efficient	 usage	 of	 resources,	 taking	
into	 consideration	 service	 requirements	 and	 user	
demands,	 in	 a	 paradigm-shifting	 scenario	 that	
combines	 cloud	 and	 fog	 computing.	 This	 ambitious	
objective	may	 be	 divided	 into	 the	 following	 general	
challenges:	

• Manage	 a	 large,	 decentralized,	
heterogeneous,	open,	volatile,	dynamic	and	
non-trustable	 set	 of	 resources	 (from	 cloud	
to	 the	 edge	 of	 the	 network),	 boosting	 and	
allowing	 an	 efficient	 and	 transparent	
utilization	 of	 the	 available	 distributed	 and	
heterogeneous	resources	at	the	edge.	

• Cloud/fogs	identification:	An	address,	a	label	
or	 a	 name	 must	 be	 linked	 to	 the	 resource	
(cloud	 and	 fog)	 in	 a	 secure	 and	 verifiable	
fashion.	 This	 is	 especially	 important	 when	
considering	dynamic	resources	(especially	in	
fog),	 whose	 time	 in	 the	 market	 is	 not	 pre-
determined,	constant	or	even	guaranteed.	

• Transparently	 and	 optimally	 offload	
computations,	 between	 fog	 and	 cloud	
computing	 systems,	 reallocating	 both	
resources	and	services,	as	well	as	executing	

Figure	1:	Fog-to-cloud	(F2C)	layered	structure:	The	stack	of	resources	

	

3	
	

services	 in	 parallel,	 addressing	 a	 solution	
based	 on	 a	 programming	 model	 that	
handles	 the	 distribution,	 parallelism	 and	
heterogeneity	in	the	resources	transparently	
to	 the	 application	 programmer.	 The	
framework	is	able	to	handle	data	regardless	
of	 its	persistency	by	supporting	a	single	and	
unified	 data	 model	 (e.g.	 data	 can	 be	
replicated	 “up”	 towards	 the	 cloud	 or	
sideways,	 with	 lower	 latency	 replicas	 being	
preferred).	

• Resources	 discovery	 and	 allocation:	
Executing	 a	 service	 requiring	 different	
resources	 (fogs	 and/or	 cloud)	 to	 interact	
with	each	other	will	 first	require	the	proper	
selection,	 and	 in	 some	 cases	 discovery,	 of	
these	resources.	A	management	entity	must	
be	 responsible	 for	 discovering	 the	 set	 of	
available	 resources	 (in	 the	 fog(s)	 that	 it	 is	
responsible	 for)	 and	 then	 choosing	 those	
that	can	best	meet	the	requirements	of	the	
service.		

• Incentivize	 users	 and	 devices	 to	 participate	
in	 the	paradigm	 through	ease	of	 operation,	
services	 customization,	 optimized	
performance	 as	well	 as	 features	 of	 security	
and	 privacy.	 That	 is,	 how	 can	 collaborative	
scenarios,	 based	 on	 resource	 sharing	 and	
clustering,	 extend	 the	 concept	 of	 cloud	
provider	 to	 an	 unknown	 frontier,	 creating	
innovative	 resource-rich	 proximate	
infrastructures	 near	 to	 the	 user,	 while	
remaining	 profitable?	 The	 concept	 is	 based	
on	 the	 contributory/volunteer	 computing,	
involving	 volunteered	 resources	 from	 users	
(device	 owners)	 willingness	 to	 do	 so,	 but	
giving	 users	 incentives	 (not	 necessarily	
financial)	 and	 transparency	 (they	 can	 see	
and	control	what	they	contribute).	

• Coordinated	 layer	 orchestration:	 A	
coordinated	 orchestration	 is	 required	 to:	 i)	
generate	 an	 individual	 service	 workflow;	 ii)	
map	 the	 service	 workflow	 into	 the	 fog	 and	
cloud	 resources	 best	 suited	 for	 the	 service	
requested,	 and	 iii)	 coordinate	 the	
interactions	 among	 the	 different	 layers	
involved	in	the	service	execution.	

• Services	 execution	 scheduling:	 Service	
scheduling	 is	 required	 to	 decide	 how	 a	
service’s	 individual	 functions	 are	 split	 into	
the	 different	 fog	 layers	 and	 mapped	 on	
different	 physical	 resources,	 and	 even	

dynamically	 managing	 schedules	 based	 on	
runtime	conditions.		

• Semantic	adaptation:	The	semantic	mapping	
between	the	attributes	of	a	service	and	the	
capacities	 offered	 by	 cloud	 and	 fog	 layers	
include	 attributes	 such	 as	 static/dynamic	
infrastructure	 (whether	 the	 infrastructure	 is	
persistent	 in	 time	 or	 not),	 reliability	 (how	
reliable	is	the	resource),	time-to-leave	(time	
to	expected	teardown),	security	and	privacy	
properties,	connectivity,	to	name	a	few.	

• The	management	 of	 security	 and	privacy	 in	
F2C	 systems.	 The	 envisioned	 scenario	 is	
undoubtedly	 inheriting	 most	 of	 the	 issues	
coming	 from	 the	 uncertainty	 of	 edge	
devices:	they	could	be	compromised,	hacked	
and	 malicious,	 malfunctioning,	 etc.	
Particular	 challenges	 include	 preventing	
botnet	 attacks	 and	 implementing	 privacy	
controls	 for	 personally	 identifiable	
information.	

• Develop	 a	 dynamic	 business	 and	 market	
model	that	can	trigger	new	business	growth	
opportunities.	New	players	 in	the	cloud	and	
services	 sectors	 are	 expected	 to	 emerge	 in	
the	near	 future,	 leveraging	 IoT	deployment.	
It	is	clear	that	coordination	is	required	when	
services	 are	 executed	 on	 resources	 hosted	
by	 different	 providers.	 Hence,	 new	 models	
of	 collaboration	 must	 be	 sought	 at	 the	
business	level.		

With	these	ambitious	challenges	the	project	has	been	
organized	in	two	iterations,	the	first,	iteration	1	(IT-1)	
from	month	1	to	month	18,	and	the	second,	iteration	
2	(IT-2)	from	month	18	to	month	36.	A	functional	and	
working	 platform	 is	 expected	 at	 the	 end	 of	 both	
iterations.	 The	 advantage	 of	 this	 approach	 is	 that	 it	
gives	 the	 project	 enough	 time	 to	 design	 and	
implement	 a	 model	 for	 IT-1	 which	 is	 sufficiently	
realistic	 that	 we	 can	 learn	 from	 it	 and	 reuse	
components,	and	use	IT-2	to	address	any	open	issues.		
Additionally,	 it	 is	 expected	 that	 the	 IT-2	 will	 further	
expand	the	functionalities	of	IT-1.	
	 	

	

4	
	

	

mF2C view
mF2C hierarchical approach:
Agents, leaders and IoT
This	 section	 presents	 the	 global	 design	 of	 the	mF2C	
architecture.	 The	 mF2C	 system	 proposes	 a	
coordinated	 management	 solution	 leveraging	 all	
existing	and	potentially	available	resources,	from	the	
edge	 up	 to	 the	 cloud,	 when	 executing	 a	 service.	
Figure	 2a)	 shows	 examples	 of	 possible	
heterogeneous	 devices	 participating	 in	 the	 mF2C	
system;	these	devices	are	heterogeneous	yet	able	to	
execute	the	services	in	a	distributed	and	coordinated	
fashion.	 In	 order	 to	 manage	 this	 execution,	 we	
propose	 to	 organize	 these	 devices	 in	 a	 hierarchical	
architecture,	 as	 shown	 in	 Figure	 2b),	 where	 the	
resources	 are	 categorized	 according	 to	 a	 certain	
policy	 and	 an	 mF2C	 agent	 entity	 deploys	 the	
management	 functionalities	 in	 every	 component	
within	 the	 system.	We	 see	 how	 different	 layers	 are	
set	 (from	 layer	 0	 at	 cloud	 to	 Layer	 N+2	 at	 the	 level	
closer	 to	 the	 edge)	 and	 the	 fact	 that	 an	 agent	 is	
deployed	 on	 all	 components.	 In	 fact,	 the	 agent	
software	 must	 in	 principle	 be	 installed	 all	 devices	
participating	 in	 the	 system;	 all	 devices	 thus	 become	
mF2C	capable	devices.	However,	in	practice,	only	nly	
devices	 with	 sufficient	 capacity	 will	 have	 the	 mF2C	
agent	 installed.	 All	 information	 from	 other	 IoT	
devices	without	enough	capacity,	such	as	sensors	and	
actuators	 (red	 balls	 in	 the	 figure)	 is	 gathered,	
processed	 and	 distributed	 by	 the	 agent	 connecting	
these	IoT	devices	to	the	system.		

Hierarchically,	 several	 devices	 are	 clustered	 under	
the	 control	 of	 one	 device	 that	 is	 defined	 as	 the	
leader.	 The	 policy	 to	 identify	 the	 clustering	 strategy	
and	 the	 leadership	 role	 is	 to	 be	 defined	 during	 the	
project,	although	characteristics	such	as	distance	and	
connectivity	may	be	considered	in	a	first	approach.	
We	assume	that:	

• Fog	 area	 or	 cluster	 is	 comprised	 of	 set	 of	
nodes,	managed	by	a	leader.	

• Only	 one	 node	 acts	 as	 a	 leader	 in	 each	 fog	
area.	

• Initially,	 only	 one	 leader	 backup	 node	 ((for	
robustness,	acting	when	the	 leader	 fails),	 in	
each	fog	area,	is	considered.	

• IoT	devices	 can	be	connected	 to	any	of	 the	
agents	in	the	mF2C	system.	

The	 whole	 set	 of	 agent	 management	 and	 control	
functionalities	 has	 been	 divided	 into	 two	 big	 blocks,	
the	Platform	Manager	(PM),	and	the	Agent	Controller	
(AC),	 roughly	as	 foreseen	 in	 the	description	of	work,	
but	 with	 their	 names	 and	 roles	 changed	 slightly.	 In	
short,	 the	 PM	 provides	 high-level	 functionalities,	
responsible	 for	 inter-agent	 communications	 (agents	
communicate	 through	 their	PMs)	and	 thus,	with	 the	
capacity	 to	 take	 decisions	 with	 a	 more	 global	 view.	
On	 the	 other	 hand,	 the	 Agent	 Controller	 (AC)	
functionalities	have	a	more	 local	 scope,	dealing	with	
local	 resources	 and	 services.	 It	 is	worth	 noting,	 that	
when	 the	mF2C	 device	 acts	 as	 a	 normal	 agent	 (not	
being	 a	 leader)	 “local	 resource”	means	 only	 its	 own	
resources	(such	as	sensors	connected	to	it,	or	its	own	
memory),	but	when	the	mF2C	device	acts	as	a	leader,	
“local	 resources”	mean	 its	 own	 local	 resources	 plus	
the	set	of	the	resources	of	the	whole	fog	area	that	it	
manages.		

Figure	2	mF2C	resources	and	architecture	

a)	Set	of	available	resources	 	 	 b)	Layered	and	hierachical	mF2C	architecture	

	

	

5	
	

It	 is	also	 important	 to	explain	which	 is	 the	approach	
to	 managing	 services/tasks,	 and	 in	 particular	 which	
service/task	 is	 considered	 local.	When	a	 service/task	
is	requested	from	any	of	the	mF2C	agents,	always	the	
responsibility	of	deciding	if	this	task	can	be	executed	
in	 that	 agent	or	delegated	downward	 (to	any	of	 the	
agents	in	the	area	if	the	agent	is	a	leader)	or	upward	
(to	 the	 higher	 hierarchical	 layer)	 is	 taken	 by	 the	
Platform	 Manager.	 If	 the	 task	 is	 delegated	 up	 or	
down,	the	communication	is	also	done	by	the	PMs	of	
the	 agents.	 Only	 when	 the	 task	 is	 decided	 to	 be	
executed	 in	 the	 specific	 agent	 is	 the	 request	 passed	
to	 the	Agent	Controller,	which	will	execute	 that	 task	
in	 the	 agent’s	 local	 (own)	 resources.	 Thus,	 in	
conclusion,	all	the	smartness	to	decide	when	and	why	
forwarding	 tasks/services	 to	 higher/lower	 layers	
resides	in	the	PM.	
A	 final	 important	 remark	 refers	 to	 the	 databases	
containing	 the	 system	 information	 (resources,	
services	and	users).	This	 information	is	distributed	in	
the	databases	of	all	the	mF2C	agents	in	the	system.		

• A	 normal	 agent	 will	 contain	 information	
about	itself	and	its	connected	IoT	devices	

• A	 leader	 will	 contain	 information	 about	
itself,	 the	 set	 of	 nodes	 in	 its	 fog	 area	
(“children”),	 and	 its	 connected	 IoT	 devices.	
Information	 about	 its	 “children”	 may	 be	 in	
an	aggregated	 form.	The	aggregation	policy	
is	 one	 of	 the	 topics	 under	 study	 in	 the	
project.	

• The	 cloud	 agent	 will	 contain	 information	
(maybe	in	some	cases	aggregated)	about	all	
the	devices	in	the	mF2C	system.	

• Each	mF2C	agent	will	 have	a	database	with	
information	 about	 resources,	 services	 and	
users;	 and	 this	 database	 is	 shared	 by	 the	
Platform	 Manager	 (PM)	 and	 the	 Agent	
Controller	(AC).		

Finally,	 for	 IT-1	 we	 made	 a	 set	 of	 assumptions,	 in	
order	 to	 simplify	 the	 set	 of	 functionalities	 to	 be	
implemented	in	IT-1.	

• Only	one	cloud	is	considered	
• Only	 three	 layers	 are	 considered	 (Layer	 0:	

cloud,	 Layer	1:	 leaders	 and	 Layer	2:	 normal	
agents).	 IoT	 devices	 such	 as	 sensors,	
actuators,	 etc.	 are	 not	 per	 se	 a	 layer,	 but	
they	are	attached	(and	managed/controlled)	
by	the	any	of	the	mF2C	agents	

• There	 is	 no	 horizontal	 communication	
among	the	mF2C	agents,	so	service	requests	
are	 only	 communicated	 vertically,	 i.e.	
between	 a	 leader	 and	 its	 children.		

Horizontal	 communication	 could	 still	 be	
implemented	 by	 relaying	 messages	 via	 the	
leader.	

• Only	one	leader	backup	node	is	considered	
• Only	 one	 node	 acts	 as	 leader	 at	 any	 given	

time	
• Resource	virtualization	is	not	considered	
• Mobility	 is	 only	 considered	 at	 the	 lowest	

layer	(normal	agents,	e.g.	mobile	phone)	

The mF2C agent: Platform
Manager and Agent Controller
In	 this	 section,	 we	 detail	 the	 mF2C	 agent	
functionalities,	 divided	 into	 the	 set	 of	 functionalities	
of	 the	 Platform	 Manager	 (PM)	 and	 the	 set	 of	
functionalities	 of	 the	 Agent	 Controller	 (AC)	 as	
outlined	above.	

The Platform Manager (PM)
The	Platform	Manager	is	the	block	responsible	for	the	
orchestration	 of	 services	 based	 on	 the	 compute,	
storage,	network	and	 IoT	 resources	and	using	a	 full-
stack	 monitoring	 system,	 which	 receives	 telemetry	
data	 from	different	 sources.	 This	block	 also	 includes	
the	distributed	execution	runtime,	which	coordinates	
the	 execution	 of	 end-user	 applications	 within	 the	
mF2C	 infrastructure.	 The	 Platform	 Manager	 can	 be	
seen	 as	 a	 global	 entity	 that	 works	 as	 a	 controller	
when	 it	 is	managing	agents	 in	 lower	 layers,	and	as	a	
receiver	of	control	data	when	it	is	being	managed	by	
agents	 from	 upper	 layers.	 The	 Platform	Manager	 is	
divided	 into	 three	 main	 components	 according	 to	
these	 responsibilities:	 Service	 Orchestration,	
Distributed	Execution	Runtime	(DER),	and	Telemetry.	
The	Service	Orchestration	is	responsible	for	allocating	
the	 services	 to	 the	 most	 suitable	 resources.	 It	 is	

Figure	3.	Platform	manager	functional	architecture	

	

	

6	
	

composed	by	the	following	components:	
1. Lifecycle	 management:	 The	 Lifecycle	

Management	 component	 is	 responsible	 for	
managing	the	lifecycle	of	the	applications	to	
be	 executed	 by	 the	 mF2C	 infrastructure.	
This	 includes	 the	 initialization,	 the	
submission	 and	 the	 termination	 of	 these	
applications,	among	other	operations.	

2. Landscaper:	 The	 landscaper	 is	 intended	 to	
obtain	 a	 view	 of	 the	 whole	 mF2C	
infrastructure	 for	 fog/cloud	 infrastructures.	
The	 Landscaper	 must	 be	 able	 to	 query	 all	
physical	 elements	 of	 the	 mF2C	
infrastructure	for	a	given	mF2C	area,	that	 is	
led	by	a	leader.	This	includes	all	the	physical	
machines	 and	parts	of,	 e.g.,	 CPU	 resources,	
storage,	memory,	etc.	Metadata	about	these	
elements	 are	 also	 required,	 e.g.,	 CPU	 core	
count,	 speed,	 cache	 size,	 etc.	 Each	 node	
stored	 in	 the	 Landscaper	 should	 have	 a	
mapping	 to	 any	 telemetry	 probes	 that	 are	
measuring	performance	on	that	machine;	as	
well	as	a	subscription	to	an	event	system	to	
ensure	 any	 changes	 in	 physical	 or	 service	
layers	 are	 updated	 accordingly	 (service	
stop/start,	 machines	 added/removed	 to	
cluster)	

3. SLA	 management:	 The	 SLA	 Management	
component	 is	 responsible	 for	managing	 the	
SLAs	 between	 the	 parties	 involved	 in	 a	
service	on	 the	mF2C	platform:	 the	platform	
and	the	platform	users.	The	component	is	in	
charge	of	 generating,	 storing	and	observing	
the	 electronic	 documents	 that	 describe	 the	
expected	 service	 level	 of	 a	 service.	 The	
agreements	 contain	 functional	 and	 non-
functional	 terms	 that	 describe	 the	 service	
being	delivered.	

4. Recommender:	Prior	 to	deploying	a	service,	
the	 Lifecycle	 Manager	 module	 will	 check	
with	 the	 Recommender	 for	 an	 appropriate	
recipe	of	 suitable	 type	of	 resources	 for	 this	
service	 (based	 on	 previous	 analysis).	 The	
recommender	 should	 match	 the	
characteristic	 of	 the	 service	 (obtained	 by	
means	 of	 the	 Service	 Categorization	
module)	 as	 well	 as	 the	 analytics	 from	
previous	 executions.	 To	 that	 end,	 the	
Recommender	 module	 must	 store	 the	
heuristics	 and	 models	 derived	 from	 the	
output	 of	 the	 Analytics	 module	 (in	
Telemetry	component).	

The	Distributed	Execution	Runtime	(DER)	component	
receives	 the	 requests	 for	 the	 execution	 of	 the	
services/tasks	 and	 optimizing	 their	 execution	 on	 the	
available	resources.	As	mentioned	earlier,	these	local	
resources	 could	 be	 those	 of	 the	 agent	 where	 the	
application	 is	 started,	 or	 resources	 managed	 by	
agents	of	other	levels	of	the	architecture.	The	DER	is	
composed	of	four	different	sub-components:	

1. Task	 management:	 The	 DER	 considers	
applications	composed	by	pieces	of	software	
encapsulated	 as	 methods	 called	 Core	
Elements	 (CE).	 The	 main	 purpose	 of	 the	
runtime	 toolkit	 is	 to	 orchestrate	 the	
execution	of	CE	invocations	(tasks),	and	thus	
to	 fully	 exploit	 the	 available	 computing	
resources.	 The	 Task	 Management	
component	 should	 receive	 the	 request	 for	
the	 execution	 of	 tasks	 from	 the	 Lifecycle	
Manager	

2. Task	 Scheduling:	 The	 Task	 Scheduling	
component	 is	 in	 charge	 of	 distributing	 the	
tasks	 generated	 by	 the	 execution	 of	 the	
applications	on	 the	 local	 resources	 selected	
by	 the	 Lifecycle	 Manager.	 In	 the	 case	 of	
resources	 belonging	 to	 another	 agent,	 the	
DER	 has	 to	 interact	 with	 the	 same	
component	 in	 other	 levels.	 It	 also	 needs	 to	
provide	 a	means	 to	 get	 information	 on	 the	
finished	 tasks,	 and	 eventually	 get	 their	
results.	

3. Policies:	 The	 Policies	 component	 is	 needed	
to	 support	 the	 runtime	 in	 the	 selection	 of	
the	 resources	 for	 the	 scheduling	 of	 tasks.	
The	 Policies	 component	 provides	 the	 list	 of	
resources	 to	 the	 Task	 Scheduling	
component.	 The	 current	 implementation	 of	
the	 runtime	 only	 supports	 the	 usage	 of	
resources	 (or	 resource	 providers)	 whose	
description	 is	 provided	 before	 the	
instantiation	 of	 the	 application.	 A	 basic	
requirement	 for	 the	 project	 is	 to	 allow	 the	
registration	 of	 additional	 resources	
dynamically,	allowing	the	runtime	to	have	an	
updated	 list	 of	 agents	 that	 can	 provide	
nodes	for	task	execution.		

4. Data	 management:	 The	 main	 responsibility	
of	 the	 Data	 Management	 in	 the	 PM	 is	 to	
keep	 the	 metadata	 of	 the	 objects	 that	 are	
stored	by	the	Data	Management	component	
in	the	AC.	The	Data	Management	must	react	
to	 the	 corresponding	 requests	 to	 get	 or	
update	 metadata.	 In	 case	 an	 agent	 is	 a	
leader,	 it	must	also	be	aware	of	 its	children	

	

7	
	

and	 the	 data	 they	 contain,	 so	 that	 the	
required	replicas	can	be	managed	 in	such	a	
way	 that	 data	 is	 accessible	 from	 the	 agent	
that	will	need	it,	which	is	not	necessarily	the	
one	 that	 created	 or	 updated	 it.	 This	
requirement	 is	 derived	 from	 the	 nature	 of	
the	mF2C	platform,	where	devices	may	lose	
connectivity,	 but	 they	 should	 be	 able	 to	
perform	 their	 functions	 even	 though	 they	
are	isolated.	

Finally,	 the	 Telemetry	 and	 Monitoring	 component	
analyses	service	performance	on	the	infrastructure	it	
is	deployed	on.	The	three	main	components	are:		

1. Intelligent	 Instrumentation:	This	component	
provides	 the	 telemetry	 collectors	 and	
aggregators	 of	 the	 metrics.	 A	 telemetry	
framework	will	perform	the	Instrumentation	
on	 the	 nodes	 of	 the	 mF2C	 cluster,	
measuring	 performance	 of	 key	 variables.	
The	 Intelligent	 Instrumentation	module	 will	
monitor	 the	 telemetry	 metrics,	 e.g.	 setting	
the	 collection	 parameters	 of	 probes	
according	to	device	constraints.	

2. Distributed	 Query	 Engine.	 The	 Distributed	
Query	Engine	should	provide	a	single	API	to	
facilitate	 the	 querying	 of	 all	 telemetry	 data	
captured.	 This	 abstraction	 layer	 reduces	
accessing	 telemetry	 data	 from	 multiple	
locations	to	a	single	source.	Each	probe	will	
register	with	the	query	engine,	notifying	it	of	
identity,	 metrics	 captured	 and	 publishing	
location;	 and	 also,	 it	 will	 register	 with	 the	
Intelligent	Instrumentation	module	so	that	it	
can	 receive	 a	 notification	 to	 throttle	 its	
measurements	and	publishing	frequency.	

3. The	 Analytics	 module	 characterises	 service	
execution	 by	 mapping	 the	 service's	
deployment	configuration	against	 telemetry	
captured	for	those	same	nodes:	

a. Deployment	 configuration:	 the	
Analytics	module	 needs	 to	 be	 able	
to	 query	 the	 deployment	
configuration	 for	 any	 given	 service	
that	 has	 been	 deployed	 by	 the	
Lifecycle	 Manager.	 This	 may	 be	 a	
currently	 executing	 service	 or	 a	
historical	 deployment.	 It	 is	
envisioned	that	the	Landscaper	will	
track	 service	 deployments	 over	
time,	 so	 should	 be	 able	 to	 take	
both	a	service	identifier	and	a	time	
window	as	parameters.	

b. Telemetry:	 	 For	 each	 node	 in	 the	
subgraph	 of	 the	 landscape	
returned,	 the	 Analytics	 module	
needs	 to	 query	 all	 Telemetry	
metrics	relating	to	each	node	of	the	
subgraph	 from	 the	 Distributed	
Query	Engine.	Each	individual	query	
should	 include	a	machine	 identifier	
and	a	time	window.		

c. Analysis:	 A	 number	 of	 analytics	
algorithms	will	run	against	this	data	
to	derive	heuristics	and	models	will	
be	 stored	 in	 the	 Recommender	
system.	

The Agent Controller (AC)
In	the	distributed	and	coordinated	strategy	proposed	
in	 mF2C,	 where	 services	 are	 executed	 in	 different	
devices,	 the	 PM	 includes	 the	 logic	 of	 the	 system,	
taking	decisions	based	on	a	more	global	view.	On	the	
other	hand,	 the	AC	has	a	more	 local	 scope,	 focusing	
on	local	resources,	services	and	users.	Regarding	the	
services,	 the	 AC	 only	 controls	 and	 manages	 the	
services	being	executed	in	its	own	device.	Finally,	the	
AC	also	manages	the	preferences,	roles,	profile,	etc.,	
of	the	user	(owner)	of	the	device.	Figure	4	shows	the	
AC	 and	 its	 set	 of	 functionalities.	 The	 set	 of	 AC	
functionalities	 is	 split	 into	 three	 main	 blocks,	
Resources,	Services,	and	Users	Management.	
The	 Resource	Management	 component	 collects	 and	
manages	 local	 resources.	 However,	 due	 to	 the	
hierarchical	 nature	 of	 the	 proposed	 mF2C	
architecture,	 resources	 are	 grouped	 into	 clusters	 of	
devices,	with	one	of	 these	devices	being	 the	 leader.	
For	this	reason	and	despite	the	local	scope	of	the	AC,	
in	 the	 case	 of	 a	 device	 being	 leader,	 its	 ‘local	 view’	
includes	 its	 own	 resources	 and	 the	 resources	 of	 the	

Figure	4	Agent	Controller	functional	architecture	

	

	

8	
	

devices	 forming	 part	 of	 this	 cluster.	 It	 is	 also	 worth	
mentioning	 that,	 although	 the	 PM	 includes	 all	 the	
smartness	 of	 the	 system,	 in	 the	 agent	 entity,	 the	
database	is	unique	and	both	the	PM	and	the	AC	share	
it.	 For	 these	 two	 reasons,	 the	 hierarchical	
architecture	 and	 the	 shared	 database,	 one	 of	 the	
main	 responsabilities	 of	 the	 AC	 regarding	 the	
resources	can	be	summarized	as:	

• Filling	 in	 the	 resource	database,	 to	be	used	
by	both	PM	and	AC,	with	information	about:	

o Own	resources	if	the	devices	is	part	
of	the	cluster	but	it	is	not	a	leader	

o Own	 resources	 and	 the	 resources	
of	the	“children”	if	the	device	is	the	
leader	of	the	cluster.		

The	six	subcomponents	of	the	Resource	Management	
are:		

1. Discovery.	 This	 subcomponent	 is	 in	 charge	
of	 discovering	 resources	 in	 a	 fog	 area	
managed	 by	 a	 leader.	 The	 discovery	
component	 should	 allow	 the	 leader	 to	
advertise	 its	 presence,	 as	 well	 as	 to	 allow	
the	agents	to	detect	a	leader	in	their	vicinity.	
In	the	case	of	a	new	agent	in	a	fog	area,	and	
after	 the	 success	 of	 discovery	 process,	 the	
new	agent	will	 join	 the	mF2C	system,	being	
part	of	that	fog	area.		

2. Policies.	 The	 policies	 block	 will	 be	 a	 set	 of	
rules	 to	 be	 applied	 and	 used	 by	 different	
blocks	 in	 the	 Agent	 Controller.	 This	 set	 of	
rules	could	be	changed	by	the	PM,	according	
to	 a	 high-level	 policy	 managed	 by	 the	 PM.	
Examples	 of	 these	 policies	 are:	 the	
clustering,	 the	 discovery	 (related	 to	 the	
frequency	 leader’s	 advertisement),	 the	
leader	 selection,	 the	 backup	 selection,	 the	
protection	 and	 the	 resource	 aggregation	
policies.	

3. Identification.	The	objectives	of	this	module	
are	 to	 provide	 every	 device	 participating	 in	
the	mF2C	network	with	a	globally	unique	ID,	
aimed	 at	 facilitating	 an	 unambiguous	
resource	 identity	 and	 to	 establish	
mechanism	 to	 update	 and/or	 revoke	 the	
resource	ID.	The	identification	component	is	
divided	 into	 two	 sub-components,	 the	
registration	 and	 the	 identity	 management.	
While	the	registration	takes	place	in	a	cloud	
server,	the	identity	management	is	executed	
by	 the	 agent	 in	 the	 resource	 itself.	 During	
the	 registration	 phase	 the	 IDKey	 is	
generated	 and	 delivered	 to	 the	 user	
according	 with	 the	 chosen	 registration	

method.	e.g.	to	the	mF2C	app	on	the	user’s	
phone).	Thus,	 Identification	can	cover	 three	
different	 aspects:	 the	 unique	 identification	
of	 the	 device,	 the	 association	 of	 the	 device	
with	 the	 user	 (ownership)	 through	 the	
IDKey,	and	the	cloud-issued	credential	which	
is	 issued	 to	 the	 agent	 controller.	 The	 latter	
allows	 the	 agent	 to	 establish	 trust	 across	
fogs,	 because	 the	 issuer	 of	 the	 credential	
resides	 in	 the	 cloud	 and	 is	 shared	 by	 the	
fogs.	

4. Categorization.	 The	 basic	 objective	 of	 the	
Resource	 Categorization	 module	 is	 to	
provide	 the	 information	 about	 the	
resources.	 When	 running	 this	 module,	 the	
system	 is	 able	 to	 determine	 the	 hardware	
(storage,	 RAM,	 processor,	 etc.),	 power,	
software	 (operating	 system),	 security	
requirements	 (data,	 device,	 and	 network),	
attached	 components	 (webcam,	 Printer,	
scanner	 etc.),	 attached	 IoT	 information	
(sensors	&	 actuators),	 and	 also	 information	
about	 resource	behaviour	 and	 features	 (i.e.	
mobility).	 This	 information	 is	 stored	 in	 the	
resource’s	 local	 database	 and,	 at	 a	 later	
stage,	 this	 information	 may	 be	 aggregated	
to	be	shared	with	the	leader	in	higher	layers.	

5. Monitoring.	 The	 Monitoring	 module	 is	
responsible	 for	 instrumentation	 of	 each	
compute	 resource.	 A	 number	 of	 telemetry	
probes	will	 capture	 performance	metrics	 of	
the	 hardware/software	 that	 services	 are	
deployed	 onto.	 Each	 probe	 is	 required	 to	
perform	3	main	functions:	

a. Collect	 metrics:	 Software	 probes	
must	 be	 able	 to	 capture	 metrics	
from	 hardware	 (both	 in-band	 and	
out-of-band),	 from	 any	 software	
source:	 host	 O/S,	 middleware	 and	
hosted	 application.	 Collectors	
should	be	able	to	query	the	output	
of	 other	 collectors	 as	 this	 could	
impact	continued	operation.	

b. Process	 metrics:	 Captured	 data	
should	 be	 passed	 through	
customised	 filters	 to	 perform	 a	
defined	 action	 on	 the	 data,	 e.g.,	
generate	 average,	 standard	
deviation,	etc.	

c. Publish	 metrics:	 Processed	 data	
should	 be	 published	 to	 defined	
destinations,	 e.g.,	 file,	 database,	
message	 queue.	 The	 publish	

	

9	
	

module	 should	 be	 able	 to	 analyse	
this	data	prior	to	publishing	so	as	to	
decide	 how	much	 data	 to	 publish,	
e.g.,	 publish	 averages,	 anomalies	
only,	etc.	

6. Data	 management.	 The	 data	 management	
functionality	 of	 the	 AC	 is	 in	 charge	 of	
allowing	applications	or	other	functionalities	
to	 store,	 retrieve,	and	delete	data	 in	mF2C.	
This	 data	 can	 be	 either	 the	 information	
needed	 to	manage	 the	 platform	 resources,	
services	 and	 users,	 or	 the	 data	 needed	 or	
generated	 by	 the	 services	 themselves.	 	 For	
the	 data	 managed	 by	 the	 mF2C	 platform,	
this	 component	 is	 also	 in	 charge	 of	
managing	 the	 appropriate	 replicas	 of	 each	
piece	of	information,	in	such	a	way	that	data	
is	accessible	from	the	agent	that	will	need	it.	
Also,	 this	 component	 must	 react	 to	 the	
requests	 coming	 from	 the	 Data	
Management	 component	 in	 the	 PM	
regarding	 the	 data	 locality	 requirements	
from	 the	 Task	 Scheduling	 component,	 and	
the	 deployment	 of	 classes	 so	 that	 objects	
can	 be	 accessed.	 As	 mentioned	 earlier,	 a	
particular	 data	 challenge	 is	 privacy	 of	
personal	identifiable	information,	so	the	first	
step	 is	data	categorisation,	as	mentioned	 in	
the	security	 section	below	 (note	 that	 this	 is	
different	 from	 the	 data	 resource	
categorisation	of	 the	Service	Management).	
A	 more	 thorough	 implementation	 of	 data	
privacy	(e.g.	addressing	any	gaps	in	meeting	
the	 requirements	 of	 the	 General	 Data	
Protection	 Regulation	 GDPR	 [4])	 should	 be	
available	in	IT-2.	

The	 Service	 Management	 component	 is	 responsible	
for	 the	 orchestration	 of	 local	 services.	 The	 main	
functionalities	 of	 this	 block	 are:	 categorization,	
mapping,	 allocation	 and	 QoS	 provisioning.	 The	
service	 requests	 are	 decomposed	 into	 tasks	 in	 the	
Task	 Management	 block	 of	 the	 Platform	 Manager.	
After	 that,	 the	 Task	 Scheduler	 block	 decides	 where	
each	 individual	 task	 will	 be	 executed,	 and	 tasks	 are	
then	deployed	to	the	corresponding	agent	controller	
of	each	selected	agent.	The	SM	functionalities	are:	

1. Categorization:	 The	 categorization	
component	 receives	 a	 service	 request,	 and	
categorizes	 this	 service	 according	 to	 some	
defined	attributes.	The	attributes	defined	in	
a	 first	approach	are	CPU,	Storage,	Network,	
Memory,	Priority,	Time	limit	and	Location.	

2. Mapping:	 The	 mF2C	 control	 architecture	
leverages	 a	 distributed	 and	 hierarchical	
control	 topology	 intended	 to	 map	 service	
requests	into	the	most	suitable	resources	for	
a	 successful	 service	 execution.	 The	 service	
requests	 can	 be	 decomposed	 into	 tasks	 in	
the	Task	Management	block	of	the	Platform	
Manager,	 and	 the	 Task	 Scheduler	 block	
decides	 where	 each	 individual	 task	 will	 be	
executed,	 that	 is,	 the	 set	 of	 agents	 where	
the	 tasks	 will	 be	 deployed.	 Once	 the	
resource	 (Agent)	 is	 selected,	 the	 mapping	
consists	of	selecting	the	resources	matching	
the	 requested	 task	 in	 the	own	 resources	 of	
the	 agent	 (be	 they	 own	 agent	 resources	 or	
devices	non-mF2C	capable	attached	to	it).		

3. Allocation:	 This	 subcomponent	 is	
responsible	 for	 the	 optimal	 allocation	 of	
available	 resources	 in	 the	 agent	 to	 the	
various	 tasks	 requests,	 during	 the	 mapping	
process	and	in	the	runtime	execution	phase.	
In	 any	 case,	 all	 communication	 will	 go	
through	 the	 mapping	 component,	 and	 its	
unique	 functionality	 is	 to	 allocate	 available	
resources	 to	 the	 various	 requests,	 trying	 to	
meet	security	and	privacy	rules,	cost	models,	
while	 also	 guaranteeing	 overall	 optimal	
resources	usage.	

4. QoS	 provisioning.	 The	 QoS	 provisioning	
subcomponent	is,	unsurprisingly	responsible	
for	 guaranteeing	 the	 required	 quality	 of	
service,	 according	 to	 the	 SLAs.	 For	 each	
service,	 it	will	contact	the	SLA	Management	
block	 in	 the	 Platform	 Manager	 to	 get	
information	 about	 the	 expected	 service	
requirements.	 The	 QoS	 provisioning	
subcomponent	 will	 be	 contacted	 by	 the	
Lifecycle	management	 component	 for	 each	
service	 query	 to	 get	 the	 characteristics	 of	
the	 candidate	 devices	 to	 execute	 the	
service.	 This	 information	 allows	 the	 QoS	
provisioning	block	 to	discard	 the	unsuitable	
candidates.	 The	 parameters	 that	 should	 be	
defined	will	depend	on	the	different	services	
characteristics,	 but	 in	 a	 first	 approach	 the	
focus	will	be	on	the	service	execution	time.	

Finally,	 the	User	Management	module	 is	 responsible	
for	 managing	 the	 profiling	 and	 the	 sharing	 model	
properties	of	the	users	who	have	access	to	the	mF2C	
system	and	the	applications	running	on	top	of	it.	This	
module	 is	 composed	 by	 three	 subcomponents,	
Profiling,	 Assessment	 and	 Sharing	 model,	 described	
as	follows:	

	

10	
	

1. Profiling:	 A	 user	 profile	 is	 the	 collection	 of	
personal	data	related	to	a	specific	user	(be	it	
both,	 the	 user/owner	 of	 the	 device	 or	 the	
mF2C	 consumer	 client	 executing	 a	 service)	
and	 the	digital	 representation	of	 a	person’s	
identity.	 It	 can	 be	 also	 considered	 as	 a	
logical	 representation	 of	 a	 user	model.	 The	
user	 profile	 information	 can	 be	 extended	
according	 to	 the	 user’s	 preferences	 and	
behaviour.	 In	 a	 first	 approach,	 this	
information	includes	the	user’s	identification	
key	 (if	 available),	 the	 user’s	 email	 (if	 they	
choose	 to	 provide	 it),	 how	 the	 user	 joins	
mF2C	 (as	 a	 contributor,	 as	 a	 consumer,	 or	
both),	 and	 the	 parameters	 such	 as	 services	
the	 user	 is	 allowed	 to	 use,	 the	 services	 the	
user	 will	 allow	 to	 run	 in	 his/her	 devices,	
maximum	number	of	services	allowed	to	run	
in	 their	 devices,	 security	 levels	 defined	 for	
different	data	flows	related	to	the	user,	etc.	

2. Assessment:	 The	 User	 Management	
Assessment	 component	 is	 responsible	 for	
checking	 that	 the	 mF2C	 applications	 meet	
the	sharing	model	and	the	profile	properties	
defined	 by	 the	 device's	 user.	 The	 main	
functionalities	are:	

a. Double	 check	 that	 the	 profiling	
properties	are	met	

b. Double	 check	 that	 the	 shareable	
resources	constraints	are	met	

c. Send	 a	 warning	 to	 the	 Platform	
Manager	 if	 some	 constraint	 is	
violated.	

3. Sharing	 model.	 The	 Sharing	 Model	
component	 is	 responsible	 for	 defining	 the	
resources	 that	 the	 device’s	 user	 wants	 to	
share	 through	 (or	 with)	 the	 mF2C	 system.	
The	 functionalities	 included	 in	 this	 module	
are	the	following:	

a. Definition	of	the	resources	that	will	
be	 available	 to	 the	 mF2C	
applications,	 such	 as	 memory,	
storage,	etc.	

b. Definition	 of	 the	 rules	 or	
constraints	in	order	to	establish	not	
only	the	amount	of	resources	to	be	
shared,	 but	 also	 the	 conditions	
under	 which	 these	 resources	
should	 be	 increased,	 decreased	 or	
not	shared	at	all,	such	as	maximum	
CPU,	 memory	 usage,	 battery	
or/and	bandwidth	limits,	etc.	

c. Definition	 of	 reward	 mechanisms	
for	 these	 resource	 contributions,	
like	some	kind	of	service	execution	
credits,	economic	rewards,	etc.	

	 	

	

11	
	

	

mF2C security approach
Security Policy
Whenever	 a	 system	 is	 designed	 it	 must	 consider	
security	as	a	 key	 feature,	 addressing	aspects	 related	
to	data,	connectivity	and	hardware	interoperation.	To	
that	 end,	 it	 is	 essential	 to	 define	 a	 security	 policy,	
which	must	guide	 implementers	towards	thinking	on	
how	security	must	be	deployed.		

mF2C system security
Table	 1	 lists	 the	 security	 requirements	 and	
functionalities	we	have	identified	as	necessary	in	the	
different	 layers,	 mapped	 into	 each	 one	 of	 the	

functionalities	expected	from	the	mF2C	agents.	
After	 identifying	 the	 mapping	 of	 the	 agent	
functionalities	 into	 the	 security	 requirements,	 we	
may	conclude	that	agents	are	not	necessarily	isolated	
entities	 and	 they,	 and	 their	 security	 functionalities,	
will	 be	 implemented/supported	 and	 deployed	
through	an	agent	controller.	
The	 security	 features	 can	 be	 implemented	 in	 the	
agent	controller’s	functional	blocks	directly,	or	in	the	
agent	 controller	 itself.	 The	 advantage	 is	 that	 each	
controller	 will	 have	 all	 the	 functionalities	 it	 might	
need,	 at	 the	 cost	 of	 increasing	 the	 size	 and	possibly	
the	 computational	 requirements	 of	 the	 agent	
controller	(all	calculations	are	done	locally).	
	 	

Table	1	Security	requirements	in	functional	blocks	in	mF2C	agents	

	

	

12	
	

	

Use cases validated in mF2C
The	 mF2C	 project	 proposes	 a	 business	 innovative	
approach	 based	 on	 three	 different	 but	
complementary	 and	 incremental	 use	 cases	 to	
validate	 the	 concepts	 developed	 within	 the	 project,	
to	 show	 a	 wide	 spectrum	 of	 scenarios	 mF2C	 may	
substantially	impact	on.	

Emergency Situation
Management in Smart Cities (ESM)
Continuing	into	this	century,	society	has	supported	a	
movement	 of	 people	 from	 rural	 areas	 to	 cities.	
Nowadays,	more	 people	 live	 in	 urban	 environments	
than	 in	 rural	 ones.	 It	 is	 estimated	 that	 this	 process	
will	 not	 stop	 and	 within	 20	 years	 the	 urban	
population	will	be	around	5	billion	of	people.	The	big	
challenges	 for	 the	 whole	 society	 will	 be	 related	 to	
resource	management	and	mobility	throughout	these	
overcrowded	 environments.	 mF2C	 works	 in	 the	
development	of	a	model	 for	smart	cities	 to	 facilitate	
the	 deployment	 of	 innovative	 services	 in	 highly	
valuable	 sectors	 (health,	 traffic	 control,	
entertainment,	etc.)	while	also	making	 the	most	out	
of	the	set	of	IoT	devices	deployed.	However,	for	that	
evolution	to	occur	an	efficient	coordination	between	
all	 the	 actions	 is	 the	 key	 to	 have	 the	 maximum	
positive	 effect	 in	 the	 fulfilment	 of	 our	 objective,	
which	 is	 actually	 the	main	mF2C	 rationale.	 Thus,	we	
propose	to	use	a	Fog	to	Cloud	management	(mf2c)	to	
handle	 an	 emergency	 situation	 in	 smart	 cities,	 since	
mF2C	 allows	 an	 immediate,	 safe	 and	 reliable	
response	to	such	an	event.		
One	 of	 the	 proposed	 services	 in	 this	 emergency	
management	 for	 smart	 cities	 is	 the	detection	of	 the	

collapse	of	a	city	construction,	see	Figure	5.	There	are	
areas	 in	 the	 world	 where	 seismic	 movements	 are	
very	 frequent.	 These	 natural	 phenomena	 can	 cause	
serious	accidents	due	to	the	collapse	of	buildings.	The	
severity	 of	 the	 accident	 can	 range	 from	 a	 simple	
movement	of	land	without	any	notable	consequence	
to	 a	 collapse	 with	 fatalities.	 Among	 this	 range	 of	
values,	 the	 performance	 of	 emergency	 services	 is	
vital	 to	 reduce	 the	 negative	 consequences	 that	may	
occur	as	much	as	possible.	
It	will	be	necessary	at	all	times	to	have	different	types	
of	sensors	that	allow	us	to	know	the	real	state	of	the	
construction.	 In	addition,	 it	must	be	guaranteed	that	
sensor	data	is	being	received	at	all	times.	To	this	end,	
mechanisms	 must	 be	 used	 to	 verify	 and	 restore	
communication	 between	 the	 sensors	 and	 the	 data	
collection	 center.	 Based	 on	 the	 values	 provided	 by	
the	 sensors,	 an	 interpretation	 system	 must	 decide	
the	 degree	 of	 action	 to	 be	 taken	 and	 activate	 the	
services	corresponding	to	the	said	action.	
To	 know	 what	 kind	 of	 services	 are	 the	 most	
appropriate	 to	 be	 activated,	 the	 mF2C	 system	 will	
provide	 the	 management	 between	 all	 the	 elements	
of	 the	 city.	 While	 the	 fog	 layer	 provides	 a	 rapid	
response	 to	 an	 emergency,	 the	 connection	with	 the	
cloud	 allows	 optimizing	 the	 resources	 to	 be	 used	
based	 on	 the	 historical	 knowledge	 of	 similar	
situations.	

Enriched Navigation Service
Sentinel	 is	 an	 IoT	 device	 consisting	 in	 different	
sensors	currently	applied	in	the	navigation	sector	for	
vessel	 monitoring.	 There	 are	 1,000	 Sentinel	 devices	
mainly	in	the	Adriatic	Sea,	aiming	at	improving	quality	
of	 the	 sailor’s	 journey.	 As	 of	 today,	 Sentinel	 devices	
work	 in	 an	 isolated	 way,	 hence	 losing	 the	 potential	

Figure	5	Collapse	building	detection	in	a	Smart	City		

	

	

13	
	

benefits	 brought	 by	 correlated	 data	 processing.	 The	
mF2C	project	can	help	on	developing	and	easing	the	
implementation	 of	 novel	 services	 enriching	 the	
Sentinel	 port-folio.	 However,	 most	 of	 the	 ideas	 for	
innovative	 services	 require	 the	 missing	 data	
correlation	 but	 also	 additional	 capacities	 such	 as	
interaction	with	external	data,	etc.	
One	of	 the	proposed	services,	 is	 illustrated	 in	Figure	
6,	 where	 an	 agent	 located	 on	 land	 or	 in	 the	 sea,	
wants	to	know	the	average	temperature	on	sea:	

1. It	 sends	 the	 service	 request	 to	 the	agent	at	
cloud.	

2. The	PM	of	the	agent	at	cloud	decides	which	
are	the	needed	resources	and	allocates	tasks	
in	different	ships	(as	explained	in	Figure	6)	

3. One	of	 the	 selected	devices	has	 the	 task	of	
aggregating	the	data	from	itself	and	the	data	
coming	from	the	other	devices,	and	sending	
it	to	the	agent	at	cloud.	

4. The	 agent	 at	 cloud	 replies	 to	 the	 request	
with	the	average	temperature	on	the	sea.	

5. One	 of	 the	 main	 characteristics	 of	 the	
proposed	 services	 is	 the	 use	 of	 Wi-Fi	 or	
LORA	for	connecting	between	ships,	and	the	
use	of	4G/5G	for	connecting	to	the	agent	in	
cloud.	

Smart Fog-Hub Service
The	 main	 idea	 is	 setting	 up	 hubs	 in	 public	
environments	 (e.g.	 airports,	 train	 stations,	 hospitals,	
malls	and	 related	parking	areas),	 capable	of	 tracking	
the	presence	of	people	and	other	objects	in	the	field,	
and	 developing	 value	 added	 services	 on	 top	 for	

proximity	marketing,	prediction	of	path/behaviour	of	
consumers,	and	taking	real	time	decisions.	
Let	 us	 consider	 an	 airport	 as	 a	 small	 city	 in	which	 a	
large	number	of	people	must	spend	a	 long	period	of	
time	 (more	 than	3	 hours)	walking	 through	 it.	 In	 this	
space,	 many	 services	 are	 offered	 to	 users	 such	 as	
shops,	 restaurants,	 relaxation	 areas,	 etc.,	 which	 are	
distributed	 throughout	 the	 airport.	 Users	 can	
dedicate	 their	 waiting	 time	 to	 make	 use	 of	 these	
services	 but	 they	 must	 always	 be	 attentive	 to	 the	
time	of	boarding	for	their	flight	and	to	the	location	of	
the	 boarding	 gate.	 The	 uncertainty	 caused	 by	 not	
knowing	the	time	a	user	needs	to	get	from	any	point	
in	 the	 airport	 to	 the	 boarding	 gate	 means	 that,	 in	
large	airports,	 the	use	of	 these	 services	 is	 limited	 to	
their	 physical	 proximity	 to	 the	 boarding	 gate	 and	 at	
the	time	of	the	said	boarding.	We	must	also	add	the	
possible	 incidents	 caused	 by	 delays	 in	 flights	 or	
changes	 in	 the	boarding	gate.	 It	 is	 true	 that	 in	some	
airports	the	estimated	times	to	get	from	one	area	to	
another	are	 indicated	 in	the	airport	signage.	But	this	
information	 does	 not	 provide	 any	 reliable	
information	 that	allows	 the	user	 to	spend	their	 time	
waiting	to	make	use	of	airport	services	in	a	calm	and	
relaxed	 way,	 without	 having	 to	 constantly	 worry	
about	 their	 physical	 situation	 inside	 the	 airport	 and	
the	 time	 remaining	 before	 the	 boarding	 time.	 In	
addition,	 these	 times	 are	 affected	 by	 the	 different	
agglomerations	 of	 people	 that	 occur	 irregularly	
(departure	 of	 passengers	 from	 a	 flight,	 queues	 at	
boarding	gates,	luggage	control,	etc.)	throughout	the	
entire	airport's	passable	space.	This	means	that	most	
users	do	not	move	out	of	a	radius	near	the	boarding	
gate	 during	 the	 last	 hour	 of	 boarding	 their	 flight.	

Figure	6	Example	of	Enriched	Navigation	Service	

	

	

14	
	

Thus,	many	of	the	services	offered	at	airports	depend	
on	the	area	where	the	boarding	gate	 is	 located	and,	
therefore,	 are	 limited	 to	 users	 from	 other	 areas.	 A	
solution	that	has	been	implemented	is	the	replication	
of	 services	 in	 different	 areas	 to	 give	 maximum	
coverage	 to	 users.	 However,	 this	 solution	 is	 totally	
inefficient	and	does	no	fulfil	its	objective.	In	addition,	
only	large	commercial	companies	can	afford	to	make	
such	a	replica.	
Figure	 7	 shows	 the	 architecture	 overview	 of	 the	
proposed	 Smart	 Fog-Hub	 Service,	with	 the	 following	
layers:	

• L-0	 Cloud:	 OpenStack	 engine	 for	 heavy	
processing,	e.g.,	ML	

• L-1	 Fog	 Leaders:	 Fog	 aggregator	 for	
underlying	layer,	and	interface	with	external	
systems	 for	 relevant	 events	 gathering,	 e.g.,	
Admin	 Dashboard;	 Flight	 gate	 opening,	 last	
call,	etc.	

• L-2	 Fog	 workers:	 Keep	 devices	 position,	
session-oriented	 information,	dispatching	of	
events,	 delivering	 notification	 of	 Points	 of	
Interest	(PoI)	in	proximity	

• L-3	 user	 devices:	 Without	 an	 mF2C	 agent,	
using	a	specific	android	app,	they	connect	to	
L-2	nodes	using	security	protocol,	according	
to	a	certain	privacy	policy.	They	must	agree	
on	terms	of	condition	

The	main	features	of	the	developed	services	will	be:	
• able	 to	 track	 the	 presence	 of	 people	 and	

objects	in	the	field		

• develop	 value	 added	 services	 for	 proximity	
marketing		

• suggestions	on	best	use	of	airport	services	
• prediction	on	path/behaviour	of	consumers		

With	 these	 main	 features	 some	 of	 the	 specific	
services	may	be:		

• Location	of	the	boarding	gate	
• Time	of	boarding	/	departure	of	the	flight	
• Services	offered	by	the	airport	
• Physical	 situation	 of	 available	 airport	

services	
• Service	selection:	

o Calculation	 of	 the	 actual	 time	 of	
access	to	the	airport	service	

o Time	and	place	of	offers	/	activities	
/	 performances	 offered	 by	 the	
service	within	the	airport.	

o Guided	 path	 through	 the	 airport	
facilities	 to	 get	 to	 the	 preferred	
services.	

	 	

Figure	7	Smart	Fog-Hub	Service	architecture	

	

	

15	
	

Who mF2C benefits?
Following	 recommendations	 provided	 by	 ISO	
standards	 related	 to	 Cloud	 Computing	 [5],	 these	
actors	 and	 roles	 are	 classified	 in	 three	 categories:	
Customer,	Provider	and	Intermediate/Partner	Side.		
Customer	Side	

• Application	 Developer,	 a	 technical	 person	
capable	of	developing	a	software	application	
to	 be	 operated	 in	 an	 mF2C-powered	
installation.		

• IoT	 Platform	 /	 Solution	 Provider,	 The	
provider	of	an	end2end	IoT	specific	solution	
or	 Platform	 candidate	 to	 consume	 as	 final	
user	mF2C	system	and	services.		

Provider	Side	
• Fog	 Service	 Provider,	 the	 provider	 of	 a	 the	

provider	 of	 a	 single	 or	 multi-fog	 set	 of	
instances	 and	 services	 which	 comprise	 and	
include	 software,	 platform	 and/or	
infrastructure	 (compute,	 storage,	 and	
networking	 services)	 operated	 from	
geographically	 dispersed	 close	 to	 the	 edge	
clusters	of	resources.			

• Cloud	 Service	 Provider,	 the	 provider	 of	 a	
single	 or	 multi-cloud	 set	 of	 services	 which	
comprise	 and	 include	 software,	 platform	
and/or	 infrastructure	 (compute,	 storage,	
and	 networking	 services)	 operated	 from	
traditional	data-centers	 in	private	/public	or	
hybrid	forms	in	an	“as-a-	Service	Model”.		

• Resource	 Contributor,	 the	 provider	 of	 a	
resource	 or	 a	 set	 of	 them	 which	 does	 not	
offer	it	in	as-a-	Service”	but	in	a	contributory	
model.		

Intermediate/Partner	Side	
• Fog	 Equipment	 Provider,	 an	 equipment	

provider	 which	 sells	 Fog	 and	 Edge	 specific	
Hardware.		

• Cloud	 Equipment	 Provider,	 an	 equipment	
provider	 which	 sells	 Cloud	 capable	
hardware,	traditionally	servers.		

• Sensor	 Provider,	 Wireless	 Sensor	 Networks	
hardware	manufacturers.	

• Network	 provider,	 Network	 services	
provider	or	operator	provided	in	isolation	to	
additional	 services	 commonly	 tagged	 as	
Cloud-services.		

It	has	to	be	noted	that	currently	in	the	IoT,	Fog	(Edge)	
and	Cloud	markets,	many	variations	and	aggregations	
of	these	Actors	can	be	found.	

Conclusions
This	paper	 is	 intended	to	bring	 light	 to	 the	key	 issue	
of	 making	 the	 best	 of	 the	 scenario	 set	 by	 putting	
together	 cloud	 and	 fog	 resources.	 As	 widely	
accepted,	 cloud	and	 fog	are	expected	 to	collaborate	
so	 a	 key	 challenge	 comes	 up	 when	 setting	 a	
coordinated	 resources	 framework	 where	 services	
may	be	executed	at	cloud	or	fog	only	leveraging	real	
resources	characteristics	and	availability.	
In	 this	 paper,	 we	 describe	 the	 mF2C	 initiative	 that	
presents	 an	 ongoing	 work	 intended	 to	 design	 and	
implement	 a	 coordinated	management	 architecture,	
pushing	 for	 innovative	solutions	dealing	with	 the	set	
of	 foreseen	 challenges.	 These	 challenges	 are	 also	
included	 in	 the	 paper	 as	well	 as	 tentative	 directions	
and	trends,	as	active	lines	of	work	within	the	project,	
for	a	clear	and	comprehensive	understanding.	Finally,	
some	 use	 cases	 are	 also	 presented	 to	 illustrate	 the	
benefits	 that	 such	 a	 coordinated	 resources	
management	 may	 bring	 to	 real-world	 scenarios,	
supported	 by	 flagship	 companies	 in	 their	 individual	
sectors.	
Certainly,	 being	 mF2C	 an	 active	 and	 ongoing	 effort	
supported	 by	 industrial	 and	 academic	members,	we	
are	open	to	any	collaboration	that	may	help	solve	the	
already	 identified	 open	 challenges	 as	 well	 as	 any	
suggestion	 for	 testing,	 validation,	 etc.	 More	
information	 about	 the	 project	 as	 well	 as	 contact	
directions	may	 be	 found	 in	 the	 links	 included	 in	 the	
next	page.	
	 	

	

16	
	

	

References
[1] “The	Internet	of	Things:	A	movement,	not	a	

market”	HIS	Markit,	
https://ihsmarkit.com/Info/1017/internet-
of-things.html	

[2] “How	Many	Internet	Connections	are	in	the	
World?	Right.	Now”	Cisco	Blogs	by	Karen	
Tilman.	
	https://blogs.cisco.com/news/cisco-
connections-counter	

[3] X.Masip-Bruin,	E.Marín-Tordera,	A.Jukan,	
G.J.Ren,	G.Tashakor,	"Foggy	clouds	and	
cloudy	fogs:	a	real	need	for	coordinated	
management	of	fog-to-cloud	(F2C)	
computing	systems",	IEEE	Wireless	
Communications	Magazine,	Vol.	23,	Issue	5,	
October	2016.	

[4] EU	General	Data	Protection	Regulation	
https://www.eugdpr.org/	

[5] http://standards.iso.org/ittf/PubliclyAvailabl
eStandards/c060545_ISO_IEC_17789_2014.
zip	

For more information
Webpage:	http://www.mf2c-project.eu/	

Deliverables:	http://www.mf2c-
project.eu/blog/press-room/deliverables/	

Twitter:	
https://twitter.com/mF2C_project?ref_src=twsrc%5E
tfw&ref_url=http%3A%2F%2Fwww.mf2c-
project.eu%2F	

LinkedIn:	https://www.linkedin.com/in/mf2c-project-
22b4ba139/	

	

	

	
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 730929. Any dissemination of results here presented reflects
only the consortium view. The Research Executive Agency is not responsible for any use that may be

made of the information it contains.

	 	

