

Towards an Open, Secure, Decentralized and Coordinated

Fog-to-Cloud Management Ecosystem

D4.3 Design of the mF2C Platform Manager

block components and microagents

(IT-1)

Project Number 730929

Start Date 01/01/2017

Duration 36 months

Topic ICT-06-2016 - Cloud Computing

Work Package WP4, mF2C Platform Manager block design and implementation

Due Date: M9

Submission Date: 30/09/2017

Version: 0.8

Status Final

Author(s): Anna Queralt (BSC)

Reviewer(s) Roberto Bulla (ENG)
Laura Val (WOS)

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 2
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Project co-funded by the European Commission within the H2020 Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO
Confidential, only for members of the consortium (including the
Commission)

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 3
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 21/07/2017
Completed section 4.4 and initial
workflows definition

Rosa M. Badia, Toni Cortes,
Ana Juan, Alexander Leckey,
Daniele Lezzi, Anna Queralt,
Román Sosa

0.2 14/07/2017 Completed sections 3.1 and 3.3 Ana Juan, Román Sosa

0.3 22/08/2017 Completed full section 6 and updates in
workflows

Cristovao Cordeiro, Román
Sosa

0.4 25/08/2017 Completed sections 1, 2, 3, 4, 5 and 7 Alexander Leckey, Daniele
Lezzi, Anna Queralt

0.5 14/09/2017 Additional content and updates in
sections 2, 3, 4 and 5

Jens Jensen, Alexander Leckey,
Anna Queralt, Román Sosa

0.6 15/09/2017 Draft ready for 1st revision Anna Queralt

0.7 22/09/2017 Several updates on workflows and text
modified accordingly

Rosa M. Badia, Toni Cortes,
Ana Juan, Alexander Leckey,
Daniele Lezzi, Anna Queralt,
Román Sosa

0.8 27/09/2017 Incorporated reviews and comments
from ENG, STFC, UPC and WOS

Anna Queralt

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 4
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Table of Contents
Version History ... 3

Table of Contents ... 4

List of figures .. 6

List of tables ... 7

Executive Summary .. 8

1. Introduction .. 9

1.1. Introduction .. 9

1.2. Purpose ... 9

1.3. Glossary of Acronyms ... 9

2. Platform Manager Description ... 11

2.1. Survey of main Platform Manager Functionalities ... 11

2.2. Security Provisioning ... 12

3. Service Orchestration Design .. 14

3.1. Lifecycle Management .. 14

3.1.1. Communication with the Agent Controller ... 18

3.1.2. Communication with the Platform Manager .. 18

3.2. Landscaper .. 19

3.2.1. Communication with the Agent Controller ... 20

3.2.2. Communication with the Platform Manager .. 20

3.3. SLA Management .. 20

3.3.1. Communication with the Agent Controller ... 23

3.3.2. Communication with the Platform Manager .. 23

3.4. Recommender ... 24

3.4.1. Communication with the Agent Controller ... 24

3.4.2. Communication with the Platform Manager .. 24

4. Distributed Execution Runtime ... 25

4.1. Task Management ... 25

4.1.1. Communication with the Agent Controller ... 26

4.1.2. Communication with the Platform Manager .. 26

4.2. Task Scheduling ... 26

4.2.1. Communication with the Agent Controller ... 26

4.2.2. Communication with the Platform Manager .. 27

4.3. Policies .. 28

4.4. Data Management .. 28

4.4.1. Communication with the Agent Controller ... 32

4.4.2. Communication with the Platform Manager .. 32

5. Telemetry and Monitoring .. 33

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 5
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

5.1. Intelligent Instrumentation ... 33

5.1.1. Communication with the Agent Controller ... 34

5.1.2. Communication with the Platform Manager .. 34

5.2. Distributed Query Engine .. 34

5.2.1. Communication with the Agent Controller ... 35

5.2.2. Communication with the Platform Manager .. 35

5.3. Analytics .. 35

5.3.1. Communication with the Agent Controller ... 37

5.3.2. Communication with the Platform Manager .. 37

6. Interfaces Design... 38

6.1. CIMI as the PM Interface .. 38

6.1.1. Protocol ... 39

6.1.2. Entry Point Resource and Collections ... 39

6.1.3. CIMI-defined Queries .. 39

6.2. Examples and Existing Implementations .. 40

6.2.1. Client Mockup ... 40

7. Microagents Design .. 43

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 6
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

List of figures

Figure 1. Platform Manager components and functionalities ... 11

Figure 2. mF2C service lifecycle ... 15

Figure 3. Lifecycle Management - Service initialization ... 16

Figure 4. Lifecycle Management - Service operation ... 17

Figure 5. Lifecycle Management - Service termination ... 18

Figure 6. Landscaper – Initialisation .. 19

Figure 7. Landscaper – Updating the model .. 20

Figure 8. States of an agreement ... 21

Figure 9. SLA Management – Create agreement ... 22

Figure 10. SLA Management – Start evaluation... 22

Figure 11. SLA Management – Evaluate agreement .. 23

Figure 12. Distributed Execution Runtime – Execute task ... 25

Figure 13. Distributed Execution Runtime – Update resources .. 27

Figure 14. Data Management – New object .. 29

Figure 15. Data Management – Get data from object ... 30

Figure 16. Data Management – Register classes ... 31

Figure 17. Data Management – New storage resource ... 31

Figure 18. Intelligent Instrumentation - Setting instrumentation ... 33

Figure 19. Intelligent Instrumentation - Adaptation .. 34

Figure 20. Distributed Query Engine - Registration of a monitoring probe .. 35

Figure 21. Distributed Query Engine - Query engine as an abstraction layer 35

Figure 22. Analytics - Service performance analysis (historical) .. 36

Figure 23. Analytics - Service performance analysis (real time) .. 37

Figure 24. Communication between agents .. 38

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 7
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

List of tables

Table 1 Acronyms ... 10

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 8
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Executive Summary

This document developed by the mF2C project describes an initial design of the mF2C Platform
Manager (former Gearbox) and the microagents for iteration IT-1.

The main focus of this document is the design of each of the Platform Manager internal components,
in such a way that their expected functions are fulfilled. Special attention is paid to the interactions
between different components; either in the same or in different agents, to provide a design that
takes into account the requirements and goals of the mF2C architecture. Also, a standard approach is
used to design interfaces for the communication between different agents. Finally, a design for the
microagents is provided according to the current architecture.

The outcome of this document is a detailed design of the Platform Manager components and
functionalities, including illustrative workflows that will also be essential for the next stages of the
development, and a design for the interfaces and microagents in mF2C.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 9
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

1. Introduction

1.1. Introduction

In D2.6 the requirements and architecture of mF2C were defined, identifying the Platform Manager
(PM) and Agent Controller (AC) as the main building blocks of mF2C agents. The functionalities
required within these blocks were also identified, as well as an initial set of interactions between
components.

In this document, each of the identified functionalities in the PM are designed in detail, paying
special attention to the interactions between the different functionalities, either in the same or in
different agents, in order to perform the expected functions. These interactions have been identified
by means of the definition of a set of workflows that depict a number of representative scenarios for
the mF2C platform, and will be essential for the upcoming integration of the different components.

This document also provides the design of the interfaces that will enable the communication
between components.

Finally, and according to the mF2C architecture in D2.6, this document establishes the concept of
microagent that was envisioned in the initial project proposal.
The structure of this document is as follows:

• Section 1 describes the aim and the context of this document.

• Section 2 provides an overview of the PM functionalities and security aspects.

• Section 3 details the design of the Service Orchestration component.

• Section 4 details the design of the Distributed Execution Runtime component.

• Section 5 details the design of the Telemetry and Monitoring component.

• Section 6 details the design of the interfaces.

• Section 7 details the design decisions taken on microagents.

1.2. Purpose

The objective of this deliverable is to provide a design of each of the functionalities in the Platform
Manager of an agent or a microagent, according to the architecture defined in D2.6 [1], as well as the
design of the interfaces that will enable communication between components, either in the same or
in different agents.

1.3. Glossary of Acronyms
Acronym Definition

AC mF2C Agent Controller

CIMI Cloud Infrastructure Management Interface

CPU Central Processing Unit

DE Decision Engine

DMTF Data Management Task Force

EBNF Extended Backus-Naur form

GPU Graphics Processing Unit

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

JSON Javascript Object Notation

NIC Network Interface Card

O/S Operating System

PM mF2C Platform Manager

QoB Quality of Business

QoS Quality of Service

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 10
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

REST Representational state transfer

SDK Software Development Kit

SDN Software Defined Networking

SDS Software Defined Storage

SLA Service Level Agreement

SLO Service Level Objective

URI Uniform Resource Identifier

UUID Universally Unique Identifier

VM Virtual Machine

XML eXtensible Markup Language

 Table 1 Acronyms

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 11
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

2. Platform Manager Description

The Platform Manager is one of the two main building blocks that comprise the agent entity, along
with the Agent Controller. The main responsibilities of this block are collecting all application or
service1 requests, translate them into internal calls, orchestrating the different tasks and performing
resource optimal allocation. At run time it controls service execution, according to define SLAs, and
other supporting tasks like telemetry collection and management.

In its interaction with other agents, it is defined as a global entity that works as a controller, when it
is managing agents in lower layers, or that acts as a receiver of control data, when it is being
managed by agents from upper layers (described in deliverable D2.6 [1]).

2.1. Survey of main Platform Manager Functionalities

The Platform Manager is the block responsible for the orchestration of services based on the
compute, storage and network resources and using a full-stack monitoring system, which receives
telemetry data from different sources. This block is also responsible for coordinating the distributed
execution of services and applications within the mF2C infrastructure.

As shown in Figure 1, the Platform Manager is divided into three main components according to
these responsibilities: Service Orchestration, Distributed Execution Runtime, and Telemetry.

Figure 1. Platform Manager components and functionalities

The Service Orchestration component is responsible for allocating services to the most suitable
resources producing optimal performance and efficient use of those resources, and for controlling
the different phases of a service being executed. Its main functionalities are:

• Lifecycle management: controls the different phases of the execution of a service, namely
the initialization, operation, and termination phases.

• Landscaper: expresses both the physical and logical infrastructure topology of the different
layers of the F2C hierarchy in the form of a graph.

• SLA management: guarantees that user’s expectations in terms of QoS and QoB are satisfied.

1 The terms “application” and “service” will be used indistinctly throughout the document, meaning a piece of
software whose execution is managed by the mF2C platform.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 12
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

• Recommender: derives scheduling recipes from a set of heuristics and models, and provides
them to the Lifecycle management.

The second component in the PM is the Distributed Execution Runtime, which is responsible for
coordinating the execution of end-user applications or services following a task-based approach. The
main functionalities in this component are:

• Task management: identifies the tasks that compose an application and detects the
dependencies between them.

• Task scheduling: selects the most appropriate resources to execute each task and monitors
task execution to keep the application flow consistent.

• Data management: stores and provides access to the data used by services or applications.

• Policies: define how tasks are assigned to resources, and how data is distributed.

Finally, the Telemetry and Monitoring component is decomposed in the following functionalities:

• Intelligent instrumentation: provides the telemetry collectors that capture the raw data
from the system’s hardware and software, and derives metrics.

• Distributed query engine: allows for the querying of telemetry data.

• Analytics: derives heuristics and models from the instrumentation data and the Landscaper,
and provides them to the Recommender.

The design of each of these functionalities will be detailed in the following sections.

2.2. Security Provisioning

As the PM is responsible for a range of planning and orchestration functionality, it is potentially
vulnerable to a number of attacks against the system. For example, an attacker could register a
malicious service as a resource, and make it look attractive to the system (low cost, high QoS). If the
service then fakes the billing/accounting records, or steals information from the tasks it runs, it could
make a lot of money before a human operator discovers it and intervenes.

On one hand there is nothing new here: after all, e-commerce works the same way. Resources must
be trusted to deliver what they promise, and to process accounting and billing fairly. In order to do
this, there are financial controls on participants, communicated to the end user through EV
certificates (extended validation). In practice, when users access a web site protected by such a
certificate, they get a nice green security icon on the address bar, pretty consistently across all
browsers; if the EV extensions are absent, the bar will (typically) be blue, still indicating security but
visibly different, thus hopefully warning people not to trust the site with their credit card details.

In e-commerce this level of protection is not achievable to smaller companies as it would be far too
expensive. Instead, they have their financial services hosted by another company which is registered
and whose entire business model is to support their customers’ financial transactions (e.g. WorldPay,
etc.). In the context of IoT, there is no possibility of securing everything with high assurance
certificates; billing must, as in cloud services, be handled centrally by a trusted service. Nevertheless,
accounting records must be PROTECTED or higher (following the terminology in the Security Policy
defined in D3.1 [2]). As a corollary, it also follows that trusted devices must have means of securely
(a) authenticating themselves to each other, (b) signing data, (c) encrypting data for others and (d)
decrypting data for themselves. This scenario usually suggests a PKI (Public Key Infrastructure) but
leaves the question of bootstrapping the PKI. In terms of capabilities of devices, most of the PM
functionality described in this deliverable already requires computational capabilities beyond the
smallest devices (such as microcontrollers), so implementation of a PKI for devices that require it
should be computationally feasible.

The threat scenarios were described extensively in D2.4 [3]. The data security policy was described in
D3.1 [2], and applied to the mF2C use cases in D4.1 [4]. We have already discussed how mF2C

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 13
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

functionalities like the Landscaper and Recommender need to check their data, in order to prevent
an attacker from publishing a malicious service. Data management obviously also needs to follow
the data policy set out in D3.1 [2]. For accounting purposes, usage data may have to be marked
confidential (i.e. PRIVATE), in order to protect the user’s privacy. Beyond the authentication, it may
be necessary also to have delegation in the traditional sense of access rights, that the user has rights
to a service or resource, and these are delegated to the tasks, to enable them to access (or create)
data on behalf of the user. Delegation may also be needed in the pragmatic sense, that a token or
delegated credential is needed for a service to “impersonate” the user, albeit usually within a
restricted time, and possibly with restricted rights, in order to allow a scheduler to run tasks, and the
lifecycle management to manage the orchestration of tasks.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 14
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

3. Service Orchestration Design

The Service Orchestration component will be responsible for allocating services to the most suitable
resources producing optimal performance and efficient use of those resources. Service placements
will be dependent on the analysis of historical invocations of similar service descriptors, and
configuration of available resources in real time, including SLA, and QoS.

The following sections are intended to design the components inside the Service Orchestration block
in order to support the mF2C architecture for IT-1, extending the content of D2.6 [1], and focusing on
the interactions with other components of the platform in order to facilitate their upcoming
integration.

3.1. Lifecycle Management

The Lifecycle Management component manages the lifecycle of a service to be executed by the mF2C
infrastructure, enabling the control of the diverse phases in the execution (initialization, operation
and termination as explained in D2.6 [1]). A service at this level corresponds to an application
executed by the Distributed Execution Runtime.
The Lifecycle Manager performs this action coordinating the different components in both the
Platform Manager and the Agent Controller. The lifecycle of a service in the mF2C platform is shown
in Figure 2.
The main operations provided by the Lifecycle Management are:

• submit a service

• stop a service

• re/start a service

• terminate a service

A submitted service is processed on the Leader PM of the level where the user is. The Lifecycle needs
to orchestrate the following tasks:

1. Find the resources where the service tasks are going to be executed. This step makes use of
the Recommender and Landscaper.

2. Initiate the SLA management, according to the expected SLA for the service. The SLA is
accepted if the needed resources from the AC are being shared by the user. This step makes
use of the SLA Manager in the leader, and the User Management of each resource (the latter
is not shown in the diagram, and will be further explained in section 3.3).

3. Start the allocation of resources and make the needed deployment of runtime framework.
The deployment may include the deployment of the task itself. This step uses the Service
Management in the AC of each node where a task will be executed, under request of its
corresponding PM.

4. The execution of the service is finally delegated to the Distributed Execution Runtime in the
leader.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 15
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 2. mF2C service lifecycle

The diagram in Figure 3 illustrates the interactions between components needed to perform these
functions, corresponding to the initialization phase of a service.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 16
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 3. Lifecycle Management - Service initialization

When a user requests a service to be run by mF2C, the PM of the agent receiving the user request
forwards it to its leader. As a first step, the Recommender is asked for an optimal deployment
configuration to run the service. This configuration is returned as a recipe, which states
characteristics of resources –not specific instances of resources– best matching the service demands.
Then, a list of resources matching the recommendation is obtained from the Landscaper. If the
Landscaper is not able to find the appropriate resources in the current cluster, then the service
deployment request is forwarded upwards and the process starts again from the upper cluster.
Otherwise, if the current cluster has resources matching the recipe, a service SLA is negotiated as will
be seen in section 3.3. Afterwards, the resources are allocated. For those resources in the current
agent, the Service Management at the AC is contacted to perform the allocation (i.e., deployment) of
the resources. For resources in children, the allocation request is forwarded to their PM, which, in
turn, forwards them to their Service Management module in the AC. Finally, the Distributed
Execution Runtime starts the execution of the service in the resources provided.

During the operation phase, the user can decide to stop the execution of the service, and restart it
later. These actions, when received by the leader, are forwarded to the Distributed Execution
Runtime to make the status change effective, as shown in Figure 4. When a start or a stop request is
received, the Landscaper is notified of the event so that it can update its information about the
deployed services. SLA violations may be used in future iterations for adaptation. In this case, a new
recipe is requested from the Recommender and the same steps followed in the initialization phase
are executed.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 17
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

 Figure 4. Lifecycle Management - Service operation

Finally, in the termination phase, the Lifecycle Manager deallocates all the resources used by the
service and terminates the SLA agreement, as shown in Figure 5. The termination workflow is started
either by a user who wants to abort execution of their services, or when the execution of the services
finishes and the Lifecycle Manager is notified of the termination. If the resources are local to the
leader, the Service Management is contacted to perform the deallocation. If the resources belong to
a child, its Lifecycle Management in the PM is contacted so that it can forward the request to its
Service Management module in the AC. Termination is also possible when the user’s rights to run
services are revoked (or they run out of credits, if it’s prepaid), although this functionality may be out
of scope for IT-1.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 18
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 5. Lifecycle Management - Service termination

The Lifecycle Management component is comprised of the following modules:

• API. It is the interface of the Lifecycle Manager to the rest of components.

• Controller. It is responsible for the behaviour of the component, in charge of the
communication with the rest of mF2C components.

• Service Registry. It keeps a registry of the services in the mF2C platform being handled by
this instance.

3.1.1. Communication with the Agent Controller

According to the defined workflows, the Lifecycle Management functionality in the PM of an agent
interacts with the following functionalities in the AC of the same agent:

Service Management. The Service Management of an agent is contacted in order to perform the
allocation of needed resources for the execution of a service, and the deployment of the needed
software.

3.1.2. Communication with the Platform Manager

The Lifecycle Management needs to interact with the following functionalities in the PM:

Recommender. The Lifecycle Management contacts the Recommender in order to retrieve an
optimal resource configuration where to execute an application.

Distributed Execution Runtime. The Distributed Execution Runtime is the component in charge of
orchestrating the execution of the service tasks. The Lifecycle Management contacts it when the
resources and software needed for the execution have been allocated, in order to start the execution
of the service.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 19
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Landscaper. It is contacted to maintain the status of resources and to retrieve a set of resources that
match the recommendation.

SLA Management. The SLA Management is in charge of observing the SLA of the execution at the
service level. The Lifecycle Management contacts the SLA Management when a service is submitted,
in order to prepare the assessment of the expected QoS.

3.2. Landscaper

The Landscaper module generates and stores the physical and logical infrastructure topology of the
different layers of the F2C hierarchy. This includes the cloud, fogs and IoT devices layers.
As shown in Figure 6, the first step for the component is to query the list of agents within its current
cluster and send requests to retrieve a list of resources that are available. Afterwards, the Landscaper
requests the set of deployed services from the Lifecycle Manager. The next step is to then generate a
usable model divided into three layers:

• Service Layer: store services/applications currently deployed.

• Virtual Layer: stores SDx (software-defined) entities eg, containers, VM’s, vSwitches, SDN,
SDS.

• Physical Layer: these are mapped to the actual physical resources of the compute node such
as memory, disks, NICs, CPUs, etc.

Figure 6. Landscaper – Initialisation

The Landscaper will store historical values so that a landscape snapshot for that cluster can be
generated for a given date/time. This allows for performance analysis on historical invocations to be
executed by mapping the associated telemetry. There are two main events of interest:

● Physical Resource: the Resource Management component of each Agent Controller will
generate a resourceChangeEvent which will be sent to the Landscaper. This will contain all
the relevant information for that physical resource.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 20
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

● Deployed Services: Lifecycle Management will raise a serviceChangeEvent that contains all
the information for that service (new deployed service, service termination, re-start, etc).

These change events allow the Landscaper component to make the appropriate changes to the
persisted model, archiving the old values as shown in Figure 7.

Figure 7. Landscaper – Updating the model

3.2.1. Communication with the Agent Controller

According to the workflows, the Landscaper functionality in the PM of an agent interacts with the
following functionalities in the AC of the same agent:

Resource Management. The Landscaper needs to communicate with the Resource Management
module to retrieve the list of compute resources available on that node.

3.2.2. Communication with the Platform Manager

The Landscaper needs to interact with the following functionalities in the PM:

Lifecycle Management: The Landscaper requires the list of currently deployed services so that it can
map them to the underlying infrastructure that they are executing on.

Landscaper: To query the Resource Management of each Agent Controller, the Landscaper must first
contact the Landscaper of the agent to be queried so that it forwards the request to the AC.

3.3. SLA Management

The SLA Management component is responsible for managing the SLAs between the parties involved
in a service on the mF2C platform: the platform and the platform users. The component is in charge
of generating, storing and observing the electronic documents that describe the expected service
level of the execution of a service.

The agreements contain functional and non-functional terms that describe the service being
delivered. In mF2C, we are mostly interested in non-functional terms, where a Service Level
Objective (SLO) is defined as a constraint on a metric. A non-fulfilled constraint for a metric datum is
considered a violation. An SLO violation implies that the agreement has been violated, and this can
imply business penalties (e.g., a discount) if they have been defined in the agreement.

The list below shows an example of the schema proposed for agreements on mF2C.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 21
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

{
 type: "AGREEMENT",
 id: "agreement-mf2c",
 name: "Example of agreement",
 provider: "mf2c-atos",
 client: "mf2c-client",
 creation: "2017-08-15T00:00:00",
 expiration: "2018-08-15T00:00:00",
 guarantees: [
 {
 name: "ResponseTimeTerm",
 constraint: "responsetime LT 1500",
 penalties: [
 {
 type: "discount"
 value: "10"
 unit: "%"
 }
]
 }
]
}

The lifecycle of an agreement is shown in Figure 8, which includes the main operations provided by
the SLA Management:

• Create an agreement

• Stop an agreement evaluation

• Re/start an agreement evaluation

• Terminate an agreement

Figure 8. States of an agreement

The creation of an agreement is initiated by the Lifecycle Management when a service is initialized
(see Figure 3). As shown in Figure 9, the SLA Management functionality receives the SLA description
(involved parties and SLOs), and builds the formal SLA document, saving it and returning an identifier
that will allow to access the document. The SLA Management checks, with the User Management
block of each device where a resource is being allocated, that the allocation is allowed according to
the sharing constraints expressed by the user. Otherwise, the SLA is rejected.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 22
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 9. SLA Management – Create agreement

The evaluation of an SLA is initiated when a service is started, which is notified by the Lifecycle
Management. SLA Management subscribes to the Telemetry and Monitoring component to be
notified about telemetry data, and the agreement is marked as started, as shown Figure 10.

Figure 10. SLA Management – Start evaluation

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 23
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

The same process is followed to stop an evaluation, marking the SLA as stopped.

The evaluation of an agreement is initiated when data is received from Monitoring. Found violations
and penalties are informed to the Lifecycle Management (Figure 11), which can then react
accordingly.

Figure 11. SLA Management – Evaluate agreement

Besides the functionality offered to other components by the API, the SLA Management component
periodically evaluates the SLOs contained in the agreement. This evaluation is supported by the
Telemetry and Monitoring. The detected violations and penalties are sent as messages to interested
observers.
The SLA Management component is comprised of the following modules:

• API. Offers the functionalities explained above.

• SLA Registry. Keeps a registry of the agreements being handled by this instance and their
status.

• Evaluator. Performs the periodic evaluation of the started agreements.

• Monitoring Adapter. Translates monitoring data from the Monitoring component to an
internal representation. This makes it possible to use a different Monitoring with minor
modifications.

• Notifier. This module is responsible for sending violations and penalties to external
components.

3.3.1. Communication with the Agent Controller

User Management. An interaction with the User Management functionality in the AC is needed in
order to check if a resource (or part of it) is allowed to be shared or not.

3.3.2. Communication with the Platform Manager

Lifecycle Management. It manages the agreement lifecycle according to a service lifecycle. It also
receives notifications about violations, which could be used to perform adaptation actions.

Telemetry Monitoring. The Monitoring supplies the needed monitoring data to the SLA in order to
assess the respective SLOs.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 24
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

3.4. Recommender

The Recommender module will store the heuristics and models derived from analyzing service
deployments. It is intended that these will take the form of decision trees. Before the Lifecycle
Management deploys a service, it will need to query the Recommender for a deployment recipe that
maps to that particular service type (eg, Service Descriptor), as shown in Figures 3 and 4 .

It is assumed that recipes are constantly changing and evolving as newer analysis takes place. Also,
there may not be an exact match of available hardware or software configuration at a given moment,
so sometimes a best fit may be required on that occasion.

3.4.1. Communication with the Agent Controller

No communication with any AC functionalities currently planned.

3.4.2. Communication with the Platform Manager

Analytics: The Recommender will provide an API that allows the Analytics module to store the output
of the service performance analysis.

Lifecycle Manager: The Recommender will provide an API to retrieve an optimal hardware/software
configuration to deploy a given service descriptor.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 25
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

4. Distributed Execution Runtime

The Distributed Execution Runtime (DER) participates in the operation phase of the services executed
in the platform, and is responsible for coordinating the execution of end-user services or applications
in the mF2C infrastructure. The DER implementation takes as its basis the COMPSs programming
framework [5]. COMPSs considers applications as composites of invocations to pieces of software
encapsulated as methods called Core Elements (CE). The main purpose of the runtime toolkit is to
orchestrate the execution of CE invocations (tasks), and thus to fully exploit the available computing
resources. In mF2C the adaptations of COMPSs include enhancements in the way the resources are
managed by the runtime due to their volatility that imposes requirements to data management and
work balancing, and integration with the security framework.

The following sections detail how the COMPSs runtime is adapted to support the mF2C architecture
for IT-1. These sections extend the content of the architecture document D2.6 [1] focusing on the
connections with other components of the PM and of the AC.

The workflow in Figure 12 shows the interaction between the components within the Distributed
Execution Runtime, as well as with other external components. The different steps in the diagram will
be explained throughout the following subsections.

Figure 12. Distributed Execution Runtime – Execute task

4.1. Task Management

In the COMPSs model, applications share computing resources and, potentially, data values;
therefore, the runtime library is split into two parts. The front-end of the runtime, instantiated in
every application, manages the private aspects of the applications: monitors accesses to private

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 26
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

pieces of data, such as objects, and detects the CE invocations. A single instance of the back-end
(Runtime Process), running as an independent process shared by all the running applications in the
device, manages all the aspects shared amongst the applications, including computing resources
(CPU, GPU, nearby nodes or VM instances on the cloud) and data (currently only files, but we
envisage managing access to databases and Content Providers).

To monitor the data accessed from each task and the data dependences among tasks, the runtime
processes the parameters of each task. The Private and Public Data Registers, respectively located on
the front-end and back-end of the runtime, record the accessed data values and assign a unique
identifier for each version of the value. Once all the accessed values are registered, the task is
scheduled for execution.

4.1.1. Communication with the Agent Controller

No communication with any AC functionalities currently planned.

4.1.2. Communication with the Platform Manager

Lifecycle Management. In the current architecture a service is instantiated by the Lifecycle
Management component that can provide a first list of resources based on the recipes obtained from
the Recommender (Figure 3). The runtime can decide during the execution to request more
resources to the Service Management.

4.2. Task Scheduling

To decide which resources host the execution of a task, the runtime is based on the concept
of Computing Platform: a logical grouping of computing resources capable of running tasks.
The decision is made on the Decision Engine (DE), which is agnostic to the actual computing
devices supporting the platform and the details of how to interact with them.

The DE acts as a metascheduler in the runtime deciding which of the available resources is
best suited to run a task. To this aim, the information provided by the Policies component of
the PM is used to create an updated list of resources, and for each one the runtime
maintains information on the expected end time, energy consumption and economic cost of
the execution. Once the target resource is selected, the scheduling of the task is delegated to
the actual implementation that it is responsible for monitoring the data dependencies of the
task and scheduling the execution of the task on its resources. For example if a Cloud
Platform is selected, then a provider specific connector is used to instantiate VMs.

In the COMPSs programming model, the tasks of an application share data through objects in
memory and files. A relevant feature of the runtime is the ability to orchestrate applications
whose tasks share big amounts of data through a storage API that interoperates with
different backends. In particular, the integration with a persistent object storage platform is
the more relevant to the mF2C project. This integration allows an application to make
objects persistent, that is, objects initially allocated in memory can be backed by the
persistent storage layer. From that point on, changes to the object will be forwarded to the
backend as well. On the other hand, objects that were made persistent can be retrieved by
other applications. This enables interactive sharing of data between applications that run
concurrently.

4.2.1. Communication with the Agent Controller

Service Management: the interaction with the Service Management is needed to instantiate the task
on the selected resource. This step requires first deploying and configuring the environment in which

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 27
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

the task is to be deployed. For example, if the target resource provides virtual machines, the
interaction includes the request for the instantiation of the VM through a VM image and the
contextualization of the machine to properly receive the runtime commands to execute the tasks. In
the case of container based environments, a Docker container will be deployed and configured. All
these steps of deployment and configurations are performed by the internal components of the
Service Management of the AC, as described in D3.3 [6].

Categorization: the diagram in Figure 13 depicts the interaction of the runtime with the
Categorization component in order to retrieve the characteristics of the resources that are made
available to the runtime to schedule the tasks. As depicted, the list of resources is stored in a local
configuration file of the runtime that periodically reads it to have an updated picture of the available
resources.

Figure 13. Distributed Execution Runtime – Update resources

4.2.2. Communication with the Platform Manager

Policies: as explained before, the Task Scheduler needs a list of resources to distribute the execution
of the tasks. In COMPSs a configuration file is used to provide the runtime with a list of providers
(endpoints of cloud providers or cluster management middleware) that is used to match the
constraints of a task with the available resources. In mF2C the list of resources is maintained through
the AC Categorization component, while the PM Policies information is used to identify the
appropriate resource. As depicted in the diagram in Figure 12, a task can be executed on the same
node as the leader agent, or if a different node is selected as worker, the Task Scheduler forwards the
task to the PM of that node. As explained in the next paragraph, the Policies could also drive the
selection of the execution node based on data locality.
Data Management: the Task Scheduler will contact the data manager in the same PM in order to
perform the following operations:

● Get an object by its identifier (objectID). It will send the objectID in string format, and a
reference to the persistent object with the corresponding objectID will be returned. The task
scheduler uses this operation to get all the objects that are needed for the execution of a
task.

● Get the locations of an object. Given an objectID, the data manager returns a list with the
locations of the corresponding object.

● Replicate an object. The Task Scheduler will send the objectID and the destination node, and
the object will be replicated in the specified destination. When the node that contains the

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 28
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

object is too busy to execute a task, the task scheduler uses this operation to replicate the
object in the node selected for execution and thus take advantage of parallelism, if possible
according to the task dependencies. This operation is used for tasks that do not modify the
object.

● Create a version of an object. It will send the objectID and the destination node, and the
object will be copied in the specified destination, with a new objectID. The purpose of this
operation is analogous to the replica, but for tasks that modify the object.

● Consolidate a version of an object. Given the objectID of a version, the data manager
“commits” the changes made to this version in the original object that was versioned to
guarantee the consistency of the parallel execution.

4.3. Policies

The policies in the execution environment define how tasks are assigned to resources, and how data
is distributed in the storage platform. These policies help to identify the most appropriate resource
to execute a task, taking into account its current state and the data it contains. Also, data policies
such as replication or distribution policies will be taken into account to improve performance and
reliability. The runtime will prioritize policies according to the current state of the execution.

4.4. Data Management

The data management functionality of the PM is in charge of providing a global view of the
data, the communication between different managers, and enforcing the data management
policies. This manager will be implemented by an extension of the logic module in dataClay
[7].

Data objects should be referenceable and accessible from any component in the mF2C
infrastructure. In order to offer this global view, we need to implement a global namespace
to reference objects. For this reason, whenever an object is created, dataClay assigns an
objectID that is unique in the whole infrastructure. We have decided to offer a flat name
space where the ID of an object is a 16 byte number created using the UUID algorithms
offered by Java. This option is highly scalable as no centralized interaction is needed, as
required by mF2C. Nevertheless, if a different naming scheme is needed (i.e some kind of
hierarchical name space), dataClay can be modified to support it. Object creation is shown in
Figure 14.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 29
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 14. Data Management – New object

As can be seen in the diagram, an object that is created, either by an application or by some mF2C
functionality, is sent to the Data Management functionality of an agent to be registered and cached.
The leader in the same cluster is immediately informed of the new object and, eventually (e.g when
there is connection, or when the agent is not busy), this information will get to the cloud.

UUIDs are good for machines but not for humans, thus we also offer a secondary namespace where
users can associate strings to objectIDs, and thus be able to refer to objects using its textual name.
This textual name (referred to as an “alias” in Figure 14) also implements a flat address space. If more
complex textual names are needed, this could also be easily changed to partition them (i.e. per user,
per cluster, …). It is important to note that this textual namespace does not need to include all
objects. For instance, it may make sense for a collection to have a textual name to be able to retrieve
it or share with other parts of the service, but not all objects in the collection need to have a textual
name because they will be accessible by iterating over the collection.

Once the application has the objectID we need to find its current location (that can change over time,
or be replicated in different resources) to be able to access it. To find this location, the data
management component in the PM will keep a table (that will be stored persistently) with the
information (objectID, locations) for all the objects in its resources, or in resources underneath in
case of a leader.

To avoid unnecessary searches at higher levels when searching for a data object, platform managers
will cache object metadata (objectID, locations). Given that this metadata is either immutable or easy
to detect if erroneous, it can be cached in any PM that has seen it. The objectID is immutable and,
although the locations can change, if a location is erroneous in a cached piece of metadata (because
the object has been moved since the last time it was accessed by the PM), the error will be detected
when requesting the object. In that case we can discard the cached information and request the
information from the root platform manager that should have the means to find the correct versions
of all data locations. This process is shown in Figure 15.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 30
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 15. Data Management – Get data from object

It is important to understand that once a PM knows the location of an object, all accesses to the
object will go directly to the node where the object is located following a flat data communication.
The same sequence of interactions is performed when the data held by an object is updated.

In order that the system is aware of the structure of the stored objects, the classes that define these
objects need to be registered in all the agents that will manage their objects. In particular, classes
related to mF2C metadata should be present in all agents, while classes related to a specific
application or service running on top of the infrastructure should be deployed only in those affected
agents. In both cases, the Data Manager in the cloud knows about all the classes registered in the
system to be able to deal with the dynamicity of the resources. This process is shown in Figure 16.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 31
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 16. Data Management – Register classes

Also, when a new resource with storage capacity joins the infrastructure (Figure 17), the classes that
hold mF2C data need to be deployed so that the new resource is able to perform the mF2C
functionalities.

Figure 17. Data Management – New storage resource

Another important task of the data manager in the PM is to be able to enforce data movements and
replications. On the one hand, the data manager will offer the possibility for other functionalities to
decide when data needs to be copied or migrated to other nodes. For instance, the distributed
execution runtime may decide that in order to increase locality, it will request a copy of a given data
to a given node or cluster.

On the other hand, it will also be in charge of applying global policies with respect to data movement
and replication from the policy manager. For instance, this manager will be able to react to policies
such as make sure that there are always two replicas in the system or that moveable data is moved
to the cluster that most recently used it.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 32
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

4.4.1. Communication with the Agent Controller

Data manager: the data manager in the PM will contact the data manager in the AC in order to
perform the following operations:

● Create a new object. It will send the objectID and the required data, and the object will be
created in the agent controller.

● Get the data (the whole object or part of it). It will send the objectID and information on the
portion to be accessed, and the data manager in the AC will recover it from its persistent
devices and return it.

● Modify the data (the whole object or part of it). It will send the objectID and information on
the portion to be modified, and the data manager in the AC will modify it and make the
modifications persistent.

Resource manager: the data manager in the PM will be contacted by the resource manager in its AC
in the following cases:

● Whenever a new resource willing to store data for the system joins, a message will be sent
by the resource manager in the AC to the data manager in the PM in order to guarantee that
this new resource is known by the storage system and to deploy all needed classes.

● Whenever an existing resource with persistent data leaves the system, the data manager in
the PM will be informed so it can be removed from the list of potential resources.

4.4.2. Communication with the Platform Manager

Data manager northbound: the data manager in PM will contact the data manager in the PM of the
leader (northbound) in order to perform the following operations:

● Register a new object to make it visible to the rest of the cluster. It will send the objectID,
the location, and optionally an alias, and the object will be registered in the metadata
information with all the other objects in the cluster.

○ Eventually, if a given object needs to be accessed from outside the cluster, the data
manager in the PM of the leader will forward this registration also to the higher level
(cloud in IT-1) to make it available from any component in the system.

● Get the location of an object. If a data manager needs to access an object that is not in the
current node, and it has no cached information about it, it will contact the northbound PM
to get the location of the object. Then it will cache this information to avoid having to make
the same request in the future.

○ Eventually this request may be forwarded to the higher PM (the cloud in IT-1) if the
object is outside the current cluster.

Data manager southbound: the data manager in PM will contact the data manager in the PMs on the
cluster (southbound) in order to perform the following operations:

• Deploy a class to all nodes that may need it once the class is registered in the cloud. This
deployment will require sending the stubs of the class to all nodes that may store objects of that
class.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 33
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

5. Telemetry and Monitoring

The Telemetry and Monitoring component is responsible for measuring service performance across
the distributed infrastructure it is running on. By increasing the resolution and simultaneously
monitoring the entire system stack, it generates metrics that allows us to review issues in context.
The modules of this component are divided into three main components. The Intelligent
Instrumentation will provide the telemetry collectors and aggregators capturing the raw data,
adjusting the frequency depending on differing factors. The Distributed Query Engine will provide a
centralised location to retrieve metrics that are actually stored throughout the local cluster. Finally,
the Analytics module will review service performance metrics against the infrastructure it actually ran
on to identify optimal placement recipes.

5.1. Intelligent Instrumentation

Instrumentation will be carried out by a telemetry framework and a collection of customized
modules will allow the instrumentation of all the relevant elements of the deployed service on the
infrastructure. The lifecycle of instrumentation will follow 3 steps:

● Collectors: Software probes will be used to capture metrics from hardware (in-band/out-of-
band), from any software source: host O/S, middleware, hosted application.

● Aggregators: Captured data can be passed through filters to perform an action on the data,
generate average, standard deviation, etc.

● Publishers: Processed data will be published to defined destinations, eg, file, database,
message queue.

Figure 18. Intelligent Instrumentation - Setting instrumentation

It is envisioned that the level of instrumentation will vary periodically:

● The results of one probe, eg, battery life, can impact the collection of a separate probe, eg,
Disk I/O, on the same device with one metric potentially causing the throttling of the other.

● Sending all collected data all of the time has the potential to overflow the system with
“useless” information. Analysis may suggest sending not just aggregated values, but only
when necessary

● Instrumentation can increase the measuring and transmission rate when outliers occur, eg,
Tukey” statistical analysis, when anomalies are detected.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 34
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 19. Intelligent Instrumentation - Adaptation

5.1.1. Communication with the Agent Controller

Monitoring: as instrumentation will only send aggregated data captured, detail metrics are only
collected when necessary. So when anomalies are detected (eg, outliers), Monitoring will be
contacted to increase capture frequencies and transmission rates.

5.1.2. Communication with the Platform Manager

Distributed Query Engine: as the Intelligent Instrumentation module is required to identify
anomalies, it will poll metrics from the Distributed Query Engine to both analyse and identify which
of the monitoring collectors need to throttle up or down their publishing frequencies

5.2. Distributed Query Engine

Monitoring collectors on each Agent Controller will capture and then potentially publish telemetry at
various locations in the hierarchy of the mF2C system which would make querying of these metrics
difficult. All probes will be required to register their node with the Query Engine so that it knows
where to retrieve metrics for that particular node. The probe will also register with the Intelligent
Instrumentation module so that it can throttle publishing frequencies depending on the output of
analysis, e.g., anomaly detection, battery degradation.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 35
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 20. Distributed Query Engine - Registration of a monitoring probe

The Distributed Query Engine will provide a centralized API to allow for the querying of all telemetry
data. All collectors will register with the query engine, notifying it of the identity of the probe and its
publishing location. This provides an abstraction layer to accessing telemetry data to a single
location.

Figure 21. Distributed Query Engine - Query engine as an abstraction layer

5.2.1. Communication with the Agent Controller

Monitoring: each instrumentation probe will notify the Distributed Query Engine of its identity and
publish location of metrics it collects.

5.2.2. Communication with the Platform Manager

Analytics: for each node in the landscape graph being analyzed, the Analyzer will query metrics - for
the required time period - from the query engine for those node

5.3. Analytics

For a given service deployment, the Analytics module will query the physical deployment
configuration from the landscape that the workload executed on. The associated telemetry for those

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 36
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

physical nodes will then be queried for that same timeframe and mapped to that landscape sub-
graph. A number of analytics algorithms will now be run against this data and the derived heuristics
and models will then be fed back to the Recommender system. It is envisioned that the analytics
module will take the form of an SDK and therefore be extensible, allowing new algorithms to be
developed and added to the available collection of algorithms.

There are multiple methods to realize the actuation triggers and feeds, so the analytics system
should support Streaming where analysis is performed on streamed data, offline mode where
analysis could take a long period (e.g., large dataset), complex event processing analysing events in
real time to derive learnings, continuous analysis of combinations of processes, or finally a user
initiated analysis.

Figure 22. Analytics - Service performance analysis (historical)

The output of any analysis will be in the form of heuristics and models, e.g. decision trees and will be
stored in the Recommender module. These will be queried during service placement.

The analysis of currently executing services is similar to historical with the exception of notifying the
Lifecycle Manager that a new deployment configuration is now available for a given Service
Descriptor or service type. The Lifecycle Manager can now decide if it wants to re-place services
matching this descriptor using this new deployment configuration.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 37
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

Figure 23. Analytics - Service performance analysis (real time)

5.3.1. Communication with the Agent Controller

No interaction anticipated currently.

5.3.2. Communication with the Platform Manager

Landscaper: the Analytics module needs to query a service stack from the Landscaper. This is the all
the relevant nodes (Service, Virtual, Physical) relating to an executing service.

Distributed Query Engine: for each node that makes up the service stack of the executing service,
the Analytics module then needs to call the Distributed Query Engine to poll for all telemetry
associate with those nodes allowing it to map performance to infrastructure.

Recommender: the Analytics module will store and update configurations that provide optimal
performance for a given service descriptor.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 38
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

6. Interfaces Design

The PM will be responsible for the orchestration of services based on the compute, storage and
network resources and using a full-stack monitoring system, which receives telemetry data from
different sources. This block is also responsible for coordinating the distributed execution of services
and applications within the mF2C infrastructure.

The PM shall be a generic unit block which is able to both communicate with other mF2C Agents and
with the Agent Controller, as shown in the following figure.

Figure 24. Communication between agents

The PM provides the interoperability required to make an efficient use of resources within
heterogeneous, scalable and likely transient platforms like mF2C.
It is possible then to identify two different interaction paths that need to be taken into account
before building the PM interface:

● PM2PM: all the requests that are sent back and forward between agents. This path is
responsible for handling requests for managing services and applications, retrieving system-
wide monitoring metrics, registering new resources, and any other PM functionality already
described in D2.6 [1];

● PM2AC: all the interactions between the platform manager and the agent controller within
the same agent. This path is responsible for all the requests concerning the allocation and
deployment of services and applications, application monitoring, resource categorization
and identification, and any other AC building blocks already described in D2.6 [1].

6.1. CIMI as the PM Interface

Since every mF2C agent will represent a node within an infrastructure, it is acceptable to
conceptually address mF2C as an IaaS, which fits well with the CIMI model and RESTful HTTP-based
protocol for management interactions, as described by DMTF [8].
CIMI provides a standard for the management of resources within an infrastructure. For mF2C and
the PM this means that every possible resource that is to be managed by the PM (services,
applications, credentials, devices, etc.), will be modelled and represented (in both JSON and XML)
according to the CIMI specification. These are identified by URIs, whereby each resource
representation shall have a globally unique ID attribute of type URI which acts as a reference to itself.
Beside its ease of use and wide industry support, this high-level interface provides:

● consistent resource management patterns, making it easy to develop small, lightweight and
infrastructure agnostic clients;

● auto discovery of new resources without changing clients, enabling dynamic evolution of the
platform;

● standard mechanism for referencing other resources;

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 39
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

● flexibility to cover a wider range of resources than strictly those related to cloud
infrastructure management.

6.1.1. Protocol

With CIMI, all PM operations shall be HTTP based, adding to the usual PUT, GET, DELETE, HEAD and
POST requests the possibility to have a JSON body, while covering all basic Search (or Query) and
CRUD (Create, Read, Update, and Delete) operations plus the possibility to add custom operations
which are mapped into POST requests. As an example, the CIMI standard does not mandate any
authentication nor authorization process, but there is the possibility to extend the model to support
authentication like "user" and "session" resources, which can also be then extended to provide
access control lists, allowing fine-grained authorization. All the resource representations shall
therefore include an "operations" attribute which explicitly states the PM operations allowed to the
client on that resource. Obviously, the security here must integrate with the mF2C security platform,
see section Error! Reference source not found..

The use of the universally supported HTTP protocol makes CIMI the right interface for such an
environment where multiple programming languages will be used to successfully integrate different
devices, operating systems and architectures into a common infrastructure.

6.1.2. Entry Point Resource and Collections

For every resource type, there will be a Collection which groups all its resources, and because
consumers and even developers should not be obliged to assume anything about the operations and
collections available in the platform, there shall exist a well-known entry point resource allowing the
discovery of the existing collections and operations. For the moment, we’ll define this entry point as
being the mF2C Entry Point resource, which programmatically shall map to mf2c-entry-point.

6.1.3. CIMI-defined Queries

The CIMI specification provides advanced features for manipulating results when searching
collections. All the resource selection parameters are specified as HTTP query parameters. These are
specified directly within the URL when using the HTTP GET method. The PM interface shall provide
CIMI defined query parameters that will give users the possibility to at least:

• filter collections, e.g.

?$filter=expression ,
where “expression” is a mathematical expression compliant with the EBNF grammar defined in
the CIMI specification;

• sort collections, e.g.

 $orderby=attributeName[:asc|:desc], ... ;

• define a range of resources (paging), e.g.

 ?$first=number&$last=number ;

• specify a subset of a resource to be acted upon, e.g.

 ?$select=attributeName,... ;

● expand references to avoid repeated requests to get referenced resources, e.g.

 ?$expand=attributeName,... .

Unsupported, or unknown, query parameters shall be silently ignored by the PM.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 40
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

6.2. Examples and Existing Implementations

SixSq has been incrementally adopting CIMI to cover all SlipStream resources and their management
from any programming language [9]. Their implementation currently offers Clojure (Java),
ClojureScript (JavaScript) and Python clients at various levels of maturity, while the server side
implementation of the interface is written in Clojure and therefore might not be ideal for smaller
mF2C agents. This implementation portability to ClojureScript would be however straightforward and
could run on a lightweight Node.js server environment. The use of Node.js on the PM would also
optimize the handling of the CIMI resources data, as there are a number of lightweight databases
already made available and compliant with the framework.

6.2.1. Client Mockup

This section will attempt to simulate a typical interaction between a client and the PM, while
proposing some key concepts and base structure for the CIMI implementation and resource
representation in the mF2C PMs.

For this example, let’s assume the PM API is running on port 80, on a device with the IP
1.2.3.4.

Discovery

Let’s assume the client (a regular consumer, a developer or even an application) is
completely agnostic of the PM’s underlying resource model. The first step would be to
discover which resource collections exist:

~# curl https://1.2.3.4/api/mf2c-entry-point -–user “ADMIN:PWD” –H “Accept:

application/json”

{

 "id" : "mf2c-entry-point",

 "resourceURI" : "http://schemas.dmtf.org/cimi/1/dsp8009.xsd",

 "created" : "2016-06-21T17:31:14.950Z",

 "updated" : "2016-06-21T17:31:14.950Z",

 "baseURI" : "http://1.2.3.4/api/",

 "devices" : {

 "href" : "device"

 },

 "operations" : [{

 "rel" : "edit",

 "href" : "mf2c-entry-point"

 }],

 "other fields" : "..."

}

Note: even though the example uses authentication, the discovery entry point is always publicly
available.

Add a new device

If we do not know what the device representation looks like, then we can query its collection:

~# curl –H “Accept: application/json” https://1.2.3.4/api/device

This will return the full list of "device" resources, with their structure. Once the resource structure is
known and we actually verify (from the previous request) that the "devices" collection has an "add"
operation, then our new_device.json will be:

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 41
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

{

 "name": "newDeviceRandomName",

 "description": "A new mF2C agent, running on a RPi"

 "networkName" : "default",

 "deviceRegion" : "Geneva",

 "deviceType" : "android",

 "appVersion" : "1.3.4",

 "deviceDisk" : 32,

 "deviceMemory" : 2048,

 “deviceCores” : 2,

 "deviceName" : “John-Doe-Smartphone",

 "deviceVisibility" : "public",

 "deviceRank" : "leader",

 "deviceIP" : "42.42.42.42",

 "nativeContextualization" : "linux-only",

 "canDeploy" : true,

 "status" : “running”,

 "endpoint" : "http://42.42.42.42/",

 "tlsEnabled" : false

}

As described in Error! Reference source not found., in practice adding a device will require p
ermission, in order to prevent malicious people from adding nefarious services.

With this JSON content, we can then create a new "device" resource:

~# curl -XPOST -H content-type:application/json https://1.2.3.4/api/device/

-d@new_device.json

 {

 "status" : 201,

 "message" : "successfully created device/255acb74-1742",

 "resource-id" : "device/255acb74-1742"

 }

Select the new device

Once created, the new resource can be fetched from its respective collection, by using a filter:

~# curl –H “Accept: application/json”

https://1.2.3.4/api/device?$filter=id="device/255acb74-1742"

{

 "acl" : {

 "owner" : {

 "principal" : "ADMIN",

 "type" : "ROLE"

 },

 "rules" : [{

 "principal" : "ADMIN",

 "type" : "ROLE",

 "right" : "MODIFY"

 }]

 },

 "resourceURI" : "http://www.mf2c-project.eu/dev/DevicesCollection",

 "id" : "device",

 "operations" : [{

 "rel" : "add",

 "href" : "device"

 }],

 "devices" : [{

"id" : "device/255acb74-1742",

 "updated" : "2017-08-18T14:47:23.953Z",

 "created" : "2017-08-18T14:47:23.953Z",

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 42
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

 "name": "newDeviceRandomName",

 "description": "A new mF2C agent, running on a RPi"

 "networkName" : "default",

 "deviceRegion" : "Geneva",

 "deviceType" : "android",

 "appVersion" : "1.3.4",

 "deviceDisk" : 32,

 "deviceMemory" : 2048,

 “deviceCores” : 2,

 "deviceName" : “John-Doe-Smartphone",

 "deviceVisibility" : "public",

 "deviceRank" : "leader",

 "deviceIP" : "42.42.42.42",

 "nativeContextualization" : "linux-only",

 "acl" : {

 "owner" : {

 "principal" : "ADMIN",

 "type" : "ROLE"

 },

 "rules" : [{

 "principal" : "ADMIN",

 "right" : "ALL",

 "type" : "ROLE"

 }]

 },

 "operations" : [{

 "rel" : "edit",

 "href" : "device/255acb74-1742"

 }, {

 "rel" : "delete",

 "href" : "device/255acb74-1742"

 }],

 "resourceURI" : "http://www.mf2c-project.eu/dev/Device",

 "canDeploy" : true,

 "status" : “running”,

 "endpoint" : "http://42.42.42.42/",

 "tlsEnabled" : false

 }],

 "count" : 1

}

Some more complex workflows are also possible where resources are templated by other resource
type. For example, if there is a PM resource called "credentials", there might be another one called
"credentialTemplates". This is useful when there are resources which have a representation that is
generated on the server side, based on a template and not the actual resource attributes (unlike
what was just exemplified above, where the full "device" representation was known and defined
directly by the client).

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 43
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

7. Microagents Design

In the mF2C project proposal, the need for a special kind of agents called microagents was foreseen.
These agents were the ones interfacing with sensors and other devices that cannot host any
significant piece of the software stack. Although the underlying concept remains, this initial idea was
refined during the definition of the mF2C architecture described in D2.6 [1].

In particular, and for the sake of generality, the architecture makes no distinction between types of
agents but, instead, considers only the concept of agent, which is the main entity in the mF2C
architecture. The structure of an agent is the same regardless of the layer on which it is located (i.e in
the cloud, next to sensors or actuators, or in an intermediate layer). Besides resulting in a cleaner and
clearer design, not distinguishing between kinds of agents gives more flexibility to the framework,
providing the possibility to reorganize the available agents according to the capacity of their
associated resources, instead of having a pre-defined role.

In this way, the concept of microagent as a distinguished kind of agent with a specific functionality
disappears, and becomes a role that any agent may play in the mF2C infrastructure, in the same way
that any agent with sufficient capacity can be the leader of a cluster.

That is, microagents are just those agents, with the same structure than any other agent, which are
located in the lowest layer of the infrastructure. As such, they will not perform the functions of a
leader and, thus, they do not need to (but can) have the same amount of capacity as other agents in
upper layers. The need for a specific design for this kind of agents has not been identified.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 44
D4.3 Design of the mF2C Platform Manager block components and microagents (IT-1)

References

[1] “D2.6 mF2C Architecture (IT-1),” [Online]. Available: http://www.mf2c-

project.eu/wpcontent/uploads/2017/06/mF2C-D2.6-mF2C-Architecture-IT-1.pdf.

[2] “D3.1 Security and privacy aspects for the mF2C Controller Block (IT-1),” [Online]. Available:

http://www.mf2c-project.eu/wp-content/uploads/2017/06/mF2C-D3.1-Security-and-privacy-

aspects-for-the-mF2C-Controller-Block-IT-1.pdf.

[3] “D2.4 Security/Privacy Requirements and Features,” [Online]. Available:

http://www.mf2cproject.eu/wp-content/uploads/2017/05/mF2C-D2.4-Security-Privacy-

Requirements-and-Features-IT1.pdf.

[4] “D4.1 Security and privacy aspects for the mF2C Gearbox block (IT - 1),” [Online]. Available:

http://www.mf2c-project.eu/wp-content/uploads/2017/06/mF2C-D4.1-Security-and-privacy-

aspects-for-the-mF2C-Gearbox-block-IT-1.pdf.

[5] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi, R. Sirvent, D. Talia and

R. M. Badia, “ServiceSs: An Interoperable Programming Framework for the Cloud,” Journal of Grid

Computing, vol. 12, no. 1, pp. 1267-91, 2014.

[6] “D3.3 Design of the mF2C Controller Block (IT-1),” [Online].

[7] J. Martí, A. Queralt, D. Gasull, A. Barceló, C. Toni and J. J. Costa, “dataClay: A distributed data store

for effective inter-player data sharing,” Journal of Systems and Software, vol. 131, pp. 129-145,

2017.

[8] “Cloud Infrastructure Management Interface (CIMI) Model and RESTful HTTP-based Protocol. An

Interface for Managing Cloud Infrastructure,” [Online]. Available:

https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf.

[9] “SlipStream API Reference,” [Online]. Available: http://ssapi.sixsq.com/.

	Version History
	Table of Contents
	List of figures
	List of tables
	Executive Summary
	1. Introduction
	1.1. Introduction
	1.2. Purpose
	1.3. Glossary of Acronyms

	2. Platform Manager Description
	2.1. Survey of main Platform Manager Functionalities
	2.2. Security Provisioning

	3. Service Orchestration Design
	3.1. Lifecycle Management
	3.1.1. Communication with the Agent Controller
	3.1.2. Communication with the Platform Manager

	3.2. Landscaper
	3.2.1. Communication with the Agent Controller
	3.2.2. Communication with the Platform Manager

	3.3. SLA Management
	3.3.1. Communication with the Agent Controller
	3.3.2. Communication with the Platform Manager

	3.4. Recommender
	3.4.1. Communication with the Agent Controller
	3.4.2. Communication with the Platform Manager

	4. Distributed Execution Runtime
	4.1. Task Management
	4.1.1. Communication with the Agent Controller
	4.1.2. Communication with the Platform Manager

	4.2. Task Scheduling
	4.2.1. Communication with the Agent Controller
	4.2.2. Communication with the Platform Manager

	4.3. Policies
	4.4. Data Management
	4.4.1. Communication with the Agent Controller
	4.4.2. Communication with the Platform Manager

	5. Telemetry and Monitoring
	5.1. Intelligent Instrumentation
	5.1.1. Communication with the Agent Controller
	5.1.2. Communication with the Platform Manager

	5.2. Distributed Query Engine
	5.2.1. Communication with the Agent Controller
	5.2.2. Communication with the Platform Manager

	5.3. Analytics
	5.3.1. Communication with the Agent Controller
	5.3.2. Communication with the Platform Manager

	6. Interfaces Design
	6.1. CIMI as the PM Interface
	6.1.1. Protocol
	6.1.2. Entry Point Resource and Collections
	6.1.3. CIMI-defined Queries

	6.2. Examples and Existing Implementations
	6.2.1. Client Mockup
	Discovery
	Add a new device
	Select the new device

	7. Microagents Design
	References

