

Towards an Open, Secure, Decentralized and Coordinated

Fog-to-Cloud Management Ecosystem

D3.3 Design of the mF2C Controller Block

(IT-1)

Project Number 730929

Start Date 01/01/2017

Duration 36 months

Topic ICT-06-2016 - Cloud Computing

Work Package WP3, mF2C Controller block design and implementation

Due Date: M9

Submission Date: 30/09/2017

Version: 1.4

Status Final

Author(s): Eva Marín (UPC)

Reviewer(s) Alexander J. Leckey (INTEL)
Cristóvão Cordeiro (SixSQ)

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 2
D3.3 Design of the mF2C Controller Block (IT-1)

Project co-funded by the European Commission within the H2020 Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO
Confidential, only for members of the consortium (including the
Commission)

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 3
D3.3 Design of the mF2C Controller Block (IT-1)

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 26/07/2017 Internal version in UPC

Eva Marín Tordera, Jordi García
Almiñana, Zeineb Rejiba, Souvik
Sengupta, Alejandro Gómez
Cárdenas

0.2 28/07/2017 First draft to distribute to the mF2C list Eva Marín Tordera, Jordi García
Almiñana, Zeineb Rejiba, Souvik
Sengupta, Alejandro Gómez
Cárdenas, Xavi Masip

0.3 28/08/2017 Internal UPC version with STFC, BSC, ATOS,
UPC and TUBS contributions

Eva Marín Tordera, Jordi García
Almiñana, Zeineb Rejiba, Souvik
Sengupta, Alejandro Gómez
Cárdenas, Xavi Masip, Jens
Jensen, Jasenka Dizdarevic, Roi
Sucasas Font, Toni Cortés, Anna
Queralt.

0.4 29/08/2017 2nd Internal UPC version with STFC, BSC,
ATOS, UPC and TUBS contributions.

Eva Marín Tordera, Jordi García
Almiñana, Zeineb Rejiba, Souvik
Sengupta, Alejandro Gómez
Cárdenas, Xavi Masip, Jens
Jensen, Jasenka Dizdarevic, Roi
Sucasas Font, Toni Cortés, Anna
Queralt

0.5 01/09/2017 Second draft to distribute to the mF2C list
including contributions from: STFC, BSC,
ATOS, UPC, TUBS, XLAB and WoS.

Eva Marín Tordera, Jordi García
Almiñana, Zeineb Rejiba, Souvik
Sengupta, Alejandro Gómez
Cárdenas, Xavi Masip, Jens
Jensen, Jasenka Dizdarevic, Roi
Sucasas Font, Toni Cortés, Anna
Queralt, Matic Cankar, Laura
Val.

0.51 04/09/2017 Revision and ESA contributions on sections
4.3, 5.1

Antonio Salis, Glauco Mancini,
Roberto Bulla

0.6 05/09/2017 Revision and BSC contributions on section
4

Daniele Lezzi

0.7 07/09/2017 Revision and ATOS contributions on section
5

Roi Sucasas Font

0.71 07/09/2017 Comments and style correction from STFC Jens Jensen

0.8 08/09/2017 Modified section on runtime constraints in
section 4.1, and contribution to section 6
from BSC and ESA

Daniele Lezzi, Anna Queralt and
Antonio Salis

0.9 11/09/2017 Updated section 3.6 from INTEL Alexander J. Leckey

1.0 12/09/2017 Contribution from TUBS in section 4.4 and
comments from ATOS

Jasenka Dizdarevic and Roi
Sucasas Font

1.1 15/09/2017 Third draft ready for 1st revision Xavi Masip

1.2 22/09/2017 Revised document Cristóvão Cordeiro

1.3 26/09/2017 Revised document Alexander J. Leckley

1.4 28/09/2017 Revised document Matic Cankar and Jens Jensen

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 4
D3.3 Design of the mF2C Controller Block (IT-1)

Table of Contents
Version History .. 3

List of figures ... 5

List of tables ... 6

Executive Summary ... 7

1. Introduction .. 8

1.1 Introduction ... 8

1.2 Purpose .. 8

1.3 Glossary of Acronyms .. 9

2. Summary of mF2C architecture for IT-1 ... 10

2.1 Survey of main Agent Controller Functionalities ... 11

2.3 Security provisioning ... 13

2.3.1. Controller Security Prototype ... 13

2.3.2. Controller Security API .. 13

3. Resource Management Design ... 14

3.1 Discovery ... 14

3.1.1 mF2C discovery in proximity .. 14

3.1.2 mF2C general discovery framework .. 15

3.2 Identification and Naming ... 15

3.3 Categorization ... 16

3.4 Policies ... 18

3.4.1 Leader and backup node selection ... 18

3.4.2. Discovery policies .. 19

3.5 Data Management ... 19

3.6 Monitoring ... 21

3.7 Core Resource Management operation .. 22

3.7.1 Workflow description... 23

4. Service Management Design .. 27

4.1 Categorization ... 27

4.2 Mapping ... 30

4.3 Allocation ... 32

4.4 QoS Provisioning .. 33

5. User Management Design... 34

5.1 Profiling .. 34

5.2 Sharing model .. 36

5.3 QoS Enforcement... 37

6. Data Base Design ... 39

6.1 Database schema .. 39

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 5
D3.3 Design of the mF2C Controller Block (IT-1)

6.2 Database Interface .. 41

7. Interfaces Design... 43

7.1 Agent Controller Interfaces ... 43

7.1.1 Diagrams centered in Agent Controller Package dependencies .. 43

7.1.2. Agent Controller’s Class Diagram .. 45

8. Illustrative Example ... 46

8.1 Registration and Identification ... 46

8.2 Discovery ... 48

Annex 1. Service Categorization ... 52

References .. 53

List of figures
Figure 1. mF2C architecture for IT-1 ... 10
Figure 2. Agent controller main functionalities .. 11
Figure 3. Example of PM and AC functionalities. .. 12
Figure 4. 802.11 Vendor-specific information element adapted to mF2C ... 14
Figure 5. mF2C general discovery framework .. 15
Figure 6. ID calculation in the agent ... 16
Figure 7. Resource Categorization .. 17
Figure 8. Each monitoring probe will be required to register before collecting 22
Figure 9. Workflow including: Registration, identification, Discovery, Key distribution. 23
Figure 10. Service categorization .. 28
Figure 11. Mapping of different service tasks .. 31
Figure 12. Mapping block in coordination with other blocks in Agent Controller 32
Figure 13. User Management’s subcomponents .. 34
Figure 14. Profile properties configuration with default values ... 35
Figure 15. Updating profile properties ... 36
Figure 16. Configuration of shareable resources when installing mF2C software 37
Figure 17. QoS enforcement working ... 38
Figure 18. Conceptualisation of the database .. 39
Figure 19. mF2C database schema ... 40
Figure 20. Agent Controller and Main Thread package diagram with dependencies 43
Figure 21. Agent Controller and Platform Manager package diagram with dependencies 44
Figure 22. Abstract Class Diagram at packet level, centred in Agent Controller dependencies 44
Figure 23. Agent controller's Class Diagram ... 45
Figure 24. Registration frontend ... 46
Figure 25. Device ID calculation frontend (before activation) .. 47
Figure 26. Device ID calculation frontend (after activation) ... 48
Figure 27. Wireshark Capture showing mF2C Beacon .. 49
Figure 28. Beacon detection and content decoding .. 49
Figure 29. Service categorization .. 52

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 6
D3.3 Design of the mF2C Controller Block (IT-1)

List of tables
Table 1. Acronyms ... 9

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 7
D3.3 Design of the mF2C Controller Block (IT-1)

Executive Summary

This document has been developed by the mF2C project, intended to clearly describe the
preliminary design of the mF2C Agent Controller, as envisioned for iteration IT-1.

The main objective of this document is to provide a comprehensive understanding about the Agent
Controller, its main functionalities for IT-1, and a preliminary approach for IT-1 development. The
document starts by summarizing the key decisions for the mF2C architecture assumed for IT-1, to
make the design contributions proposed in the deliverable easy to understand, later introducing the
set of main blocks and functionalities foreseen for the Agent Controller. Special attention is paid to
describe each one of the three different blocks gathering all functionalities for the Agent Controller,
namely, the Resource Management, the Service Management and the User Management, including
design aspects related to the core functionalities envisioned for IT-1 as well as the interfaces
required for the Agent Controller. Such functionalities are illustrated through different workflows, as
the main foundation for further development. Finally, security is also considered as previously
assessed in D2.4 for the whole mF2C system and particularly for the Agent Controller in D3.1.

The outcome of this document is a detailed design of the Agent Controller, including approaches for
the different functionalities (monitoring, data management, resources discovery and identification,
policies, SLA, QoS enforcement, etc.), including illustrative workflows that will also be essential for
the next stages of the development, as well as a preliminary design of the data base to be
considered in mF2C.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 8
D3.3 Design of the mF2C Controller Block (IT-1)

1. Introduction

1.1 Introduction

In deliverable D2.6 [1] we defined and designed the mF2C architecture considering some
assumptions for the implementation in iteration IT-1. The main component of this hierarchical
architecture is referred to as the agent. A key disrupting idea coming up from the mF2C project
leverages the fact that any kind of device with enough computing capacity could participate in the
mF2C system, from a server to a single board computer such as a Raspberry or a smart phone. To
make it possible, the device would only be required to install the agent and start a registration
process. The agent will have all the management and control functionalities for the device to
become a participant in the mF2C system.

In the architecture presented in D2.6, there are two main concepts to be highlighted. The first refers
to the hierarchical approach, introducing the concept of an agent serving as leader. All agents are
grouped in clusters (fog area) managed and controlled by a leader. The second one, refers to the fact
that the whole set of management and control functionalities has been divided into two big blocks,
the Platform Manager (PM) described in deliverable D4.3, and the Agent Controller (AC) described in
this deliverable. In short, the PM provides high-level functionalities, responsible for inter-agent
communications (agents communicate through their PMs) and thus, with the capacity to take
decisions with a more global view. On the other hand, the AC has a local scope, that is, focusing on
the device’s local resources. It is worth mentioning what local resources for an Agent Controller are.
In an agent, the local resources are only its own local resources. In a leader, the local resources are
all resources within the cluster.

As a short summary, main functionalities for the Agent Controller are:

− Filling the resources database with information about local resources

− Filling the services database with information about services/tasks being executed/or to be
executed in its local resources

− Filling the user database with information about the users participating/utilizing resources
and services in its local resources

These three basic functionalities will require additional functionalities to make it work, such as:
discovery, monitoring, identification, categorization, etc., all described in detail in the different sub-
sections of this deliverable. It is also worth highlighting that the mentioned database is unique per
agent and is shared between the Agent Controller and the Platform Manager.
Other functionalities are:

- Assigning resources to requested execution tasks (Mapping), in this case only to its own local
resources.

- Guaranteeing that the mF2C services running in the device meet the constraints defined by
the user.

- Setup and management of such user’s profiles with roles and permissions

The exact functionalities and the detail of the proposed way of implementing them are described in
the different sections of this deliverable.

1.2 Purpose

The objective of this deliverable is to provide a deep description of the Agent Controller (AC) block,
which is one of the two main components of the agent architecture proposed in deliverable D2.6 [1].
To this end, and after the review of the proposed architecture for IT-1 in section 2, the different
sections correspond to the main components of the agent controller sub-blocks., which are the
resource management, the service management and the user-management sub-blocks, described in
Sections 3, 4 and 5 respectively. Beyond the mentioned sub-blocks, another main component of the

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 9
D3.3 Design of the mF2C Controller Block (IT-1)

Agent Controller is the database. The database is designed to be shared by both, the Agent
Controller (AC), described in this deliverable, and the platform manager (PM), described in the
deliverable D4.3. The design of this common database and its interfaces are proposed in Section 6.
All the interfaces for communicating the internal sub-blocks of the Agent Controller are described in
Section 7. Finally, in section 8 we present an illustrative example with a preliminary implementation
of some of the AC functionalities.

For the sake of better understanding about the operation of the different proposed blocks, this
deliverable also includes some workflows describing the functionalities of the sub-blocks.

1.3 Glossary of Acronyms
Acronym Definition

AC Agent Controller

ACK Acknowledgement

API Application Programming Interface

APP Application

CA Certification authority

CPU Central Processing Unit

DB Data Base

device_ID Device identificator

ESD Extreme Studentized Deviate

FA Fog Area

GPU Graphics Processing Unit

HDD Hard Disk Drive

ID Identificator

ID_key User identificator

IoT Internet of Things

JSON JavaScript Object Notation,

mF2C
Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud
Management Ecosystem

MQTT Message Queue Telemetry Transport

OID Object ID

PCM Performance Counter Monitor

PM Platform Manager

QoS Quality of Service

SDD Solid State Drive

SLA Service Level Agreement

SLO Service Level Objective

SQL Structured Query Language

UML Unified Modelling Language

USK User Secret Key
Table 1. Acronyms

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 10
D3.3 Design of the mF2C Controller Block (IT-1)

2. Summary of mF2C architecture for IT-1

The mF2C architecture has been described in deliverable D2.6 [1], as a layered architecture where
resources are categorized according to a certain policy and a so-called agent entity is responsible for
deploying the management functionalities in every component within the system. That is, all devices
participating in the mF2C architecture should install the agent software to make the agent entity
work.

On the other hand, the mF2C project development has been defined following an iterative approach,
thus setting two iterations, the first, IT-1, ending in M18, and the second, IT-2, in M36 –as a final
implementation of the mF2C system. Figure 1 depicts the functional control architecture we identify
for IT-1, mainly considering the following assumptions:

− Only one cloud is considered.

− Only three layers are considered. These layers are logical layers considered for management
and control.

− There is no horizontal control communication among nodes, so service requests are only
vertically forwarded.

− Fog area stands for the set of nodes managed by a leader.

− Only one node acts as leader in each fog area. In Figure 1, nodes in fog layer 1 are leaders of
the fog areas formed by each of them and the agents in fog layer 2.

− Only one backup node, in each fog area, is considered for robustness. In Figure 1, one of the
agents in fog layer 2, acts as a backup node. And in case that the leader in fog layer 1 fails,
the backup node will become leader and will belong logically to layer 1.

− Resources information will be stored in a database and its management will follow a simple
approach just to verify the system works.

− Mobility is only considered at fog layer 2.

− Functionalities to be included will be a subset of the total identified, sufficient to show mF2C
system performance and benefits.

− IoT devices can be connected to any of the agents in the mF2C system.

− Control communication among agents is always done through the Platform Managers.

Figure 1. mF2C architecture for IT-1

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 11
D3.3 Design of the mF2C Controller Block (IT-1)

As it can be seen in Figure 1, the agent software is installed in all the devices (nodes) participating in
the mF2C system. That is, all the nodes in the architecture are agent1. The two main building blocks
that comprise the agent entity are: the Platform Manager and the Agent Controller. The Platform
Manager is the block responsible for the orchestration of services –based on the computing, storage
and network resources –through a full-stack monitoring system that receives telemetry data from
different sources–, which is in depth described in deliverable D4.3. On the other hand, the Agent
Controller only manages the local resources, services and users of each individual agent and will be
largely described in this document.

2.1 Survey of main Agent Controller Functionalities

This section reviews the main components for the Agent Controller as proposed in deliverable D2.6
[1]. The set of functionalities for the Agent Controller is split into three main blocks, Resources,
Services, and Users. The first block, the Resources, will mainly encompass all functionalities dealing
with resources management, including for example, discovery, naming or categorization, just to
name a few. The second block, the Services, will include functionalities related to services, such as
task execution, mapping, etc. Finally, the third block, the User, will include functionalities, such as
QoS enforcement or user profiling, highly related to the user expectations, demands and
characteristics. The main functionalities of the Agent Controller are shown in Figure 2.

Figure 2. Agent controller main functionalities

Regarding the resources, the main functionality of the Agent Controller is to fill in the tables
information in the agent database, related to the resources. It is worth mentioning that the agent
database is shared by both the Platform Manager and the Agent Controller. This database must
include local information related to the local resources, and its size would depend on the strategy
decided to manage the data (cache with minimal information, aggregation policy, etc.).

Related to the services, the Agent Controller acts as a “slave” of the Platform Manager. It is
important to remind two different aspects of the proposed architecture: 1) Control communication
is always done among Platform Managers, and; 2) All the smartness of the system is also located at
the Platform Manager. Figure 3 is shown to illustrate these two characteristics.

1In fact, other kind of devices can participate in the mF2C system if they are attached to an mF2C agent, for example
sensors (represented as IoT in Figure 1) or even devices with computing capacity but without enough capacity to have an
mF2C agent installed.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 12
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 3. Example of PM and AC functionalities.

In Figure 3 we show an example where a service is requested to be executed in the mF2C system.
Let’s assume the service is composed of four tasks, i.e., T1, T2, T3 and T4 – the PM will also have the
capacity to divide the requested service into different tasks, not shown in the figure though. In the
example, we see that the PM has the capacity to decide what should be done with the requested
tasks. Let’s also assume that the service is initially requested to a node acting as leader (this is not a
constraint though, and other examples may be proposed where the service is requested to any node
in the architecture). The PM in this node (leader), according to the resource information in its
database, which includes information about its own resources and about its children, decides the
following for each one of the tasks for the requested service:

− it cannot handle tasks T1 and T4 (this means they cannot be handled in the node, the leader
in this case, nor in the set of nodes under its responsibility) and consequently these tasks are
forwarded to the upper layer, in this case the cloud agent.

− Task T3 can be executed in one of its children, and then task T3 is forwarded to the lower
layer, to one of its children.

− Task T2 can be executed in the own device’s resources and then the task execution request
is forwarded to its Agent Controller.

It is worth mentioning that, for tasks T1, T3 and T4 (two first bullets), when the task is forwarded up
or down in the hierarchy, the PM is the one forwarding the request to the PM located in the upper
or lower layer.

With this example, we can see the mentioned two characteristics of the architecture, but also the
main functionality of the Service Management component in the Agent Controller, namely, to
allocate, execute and control the requested tasks in local resources, understanding local resources
as its own resources.

Finally, the User Management block in the Agent Controller has all the functionalities related to the
management of the profiles, the QoS enforcement and the sharing model of the users who have
access to the mF2C system and the various services running on top –including aspects related to the
definition of rules for the shareable resources residing in the devices (CPU, disk, battery, etc.) and
the user roles definition. It is interesting to comment that, in an mF2C system a user could play a
role as a consumer, a provider, or most usually play both roles. In other words, a device in the mF2C
system may be a service consumer, using the mF2C system to execute services, but it can also be a
provider, i.e., a resource provider under a collaborative sharing model yet to be defined. In this
sense, the user profile should include all these particularities. For example, the Profile component in

Agent	controller

T2

Platform	manager

Child

Platform	manager

T3

Leader	

Platform	manager

Cloud	leader

T1	and	T4

T1

T2 T3

T4

Service	execution	request
Allocate	T2	in	own	
resources	in	the	
leader	

Smartness	
to	decide

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 13
D3.3 Design of the mF2C Controller Block (IT-1)

the User Management block could include which is the QoS agreed with the user to execute services
(QoS enforcement), and also the conditions to share his/her resources with the mF2C system
(sharing model).

2.3 Security provisioning

Deliverable D2.4 [2] gives a comprehensive background into IoT security in general. Deliverable D3.1
[3] and D4.1 [4] are more specific and cover security and privacy for the controller and platform
manager respectively. D3.1 describes the security policy for data in mF2C, taking into account the
different capabilities of the devices, and lists the (expected) security features of each of the
architectural layers; D4.1 also looks at security from the perspective of the use cases. The basic idea
is to have three levels of protection: “private” for personal or sensitive data; “protected” for data
which is not secret but needs integrity protection (such as advertised services), and “public” for data
which needs no special protection.

The Agent Controller must with no doubt implement this security model. For example, registering
resources should be permitted only for authenticated and authorized entities, and the information
needed for each entity to authenticate itself is typically private. However, once a list of resources is
available, this list needs only to be protected: every potential consumer of the resource should be
able to see what is available, but an unauthorized entity should not be allowed to modify the list or
database of resources (otherwise it could elevate its privileges, e.g. through phishing.) Statistics on
overall resource availability could be made public (which doesn’t say data must be published, merely
that it needs no special protection.)

2.3.1. Controller Security Prototype

From March to August 2017, STFC had a small team working on a prototype security
implementation, working alongside with the team writing the associated deliverables (D3.1 and
D4.1). The purpose was to have a proof of concept implementation of the security policy and Agent
Controller, with code being tested in Arduinos and Raspberry PIs [5] [6]. The implementation used
MQTT over private networks; the idea being that the Leader agent would provide the MQTT broker
which would enable the remaining parties to communicate, and the security classification was
introduced through the MQTT topic. The payload of the message was JSON (RFC 7159 [7]), as it is
simple enough to parse even for an Arduino, and JSON also supports signatures (RFC 7515 [8]) and
encryption (RFC 7516 [9]). However, signatures and encryption were not implemented in the
prototype.

2.3.2. Controller Security API

Building on this work, the next step is to design an API upon which agents and applications for IT-1
can be implemented. After discussion within the mF2C consortium, the API will be initially
implemented in Python and Java. The AC security API must enable its caller to:

− bootstrap its identity;

− in particular, for services that need to be able to sign messages, a certificate is generally
needed;

− authenticate;

− classify its generated, stored, or sent data according to the security policy (see 3.5);

− determine the security requirements of received data.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 14
D3.3 Design of the mF2C Controller Block (IT-1)

3. Resource Management Design

3.1 Discovery

In order to make it possible for users to contribute and to share their resources with the mF2C
system, it is necessary to adopt suitable mechanisms to notify them about the existence of mF2C
instances close to their location. This functionality is achieved by the discovery module.

3.1.1 mF2C discovery in proximity

In the following, we describe the process proposed to enable mF2C discovery close (i.e., in
proximity) to the network edge, along with the motivations behind the proposed approach.

mF2C discovery in proximity is made possible through the use of the beacon stuffing approach [10],
which consists in embedding customized information inside specific fields of standard-compliant
802.11 beacons. More specifically, as shown in Figure 4, information about mF2C-support will be
advertised within the vendor specific information element of the 802.11 beacon [11]. Following the
element ID (equal to 221, DD in hexadecimal) and the length fields, an Organizationally Unique
Identifier (OUI) will be included. At this stage, we can use the FF:22:CC OUI, which has not been
assigned to any organization yet, as an OUI for mF2C. The actual beacon payload carrying the mF2C-
related information is provided next. In addition to the ID of the leader broadcasting the beacons,
this payload will also contain information that will help the contributor decide whether to contribute
or not, such as a user-friendly description of the kind of tasks in which its resources may be used, a
field describing how urgently the resources are needed, etc. This information will be embedded in an
efficient manner in order to keep the frame size as small as possible. After that, the mF2C-enhanced
beacon will be broadcast by the leader within its area according to a schedule strategy to be
dynamically determined by the policies.

Figure 4. 802.11 Vendor-specific information element adapted to mF2C

From a contributor’s perspective, a device with the mF2C agent installed, will start to scan for these
special frames as soon as the agent is turned on. Consequently, the device will be able to detect
them whenever it enters an mF2C-capable area where the advertisements are transmitted. After
extracting the mF2C-related information from the corresponding frame fields, the agent at the
contributor’s device will verify whether the message is mF2C-compliant and if it is indeed coming
from a valid mF2C device (using the advertised leader ID). It will then check the advertised
characteristics and send an acknowledgment to the corresponding leader in case these
characteristics match its contribution preferences.

As it may be noticed, the proposed discovery process does not involve any extra message to be
exchanged. The necessary discovery-related information is instead included inside the beacon
message, without requiring a pre-established network connection. The only additional processing at
the contributor’s side will result from the analysis of the information embedded inside the beacons.
With that in mind, this information processing will be designed in a resource-efficient manner. It is
worth also mentioning that the 802.11 standard is used. This is mainly motivated by the fact that
most of the computing-capable devices (consequently mF2C candidate devices) are equipped with a

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 15
D3.3 Design of the mF2C Controller Block (IT-1)

802.11 interface. In addition, it is characterized with a ~100m range, which is well-adapted to local
area mF2C deployments.

It is worth mentioning that a strategy should be designed to prevent misbehaviour driven by
potential fake leaders. Indeed, a device can replicate the beacon and act as a false agent.

3.1.2 mF2C general discovery framework

The different layers of the mF2C hierarchy are characterized by both a heterogeneous landscape of
networking technologies and the different roles and interactions among them (leader - contributor
at the lowest level, leader_level_N – leader_level_N+1 at higher levels). As a result, a unique
discovery strategy cannot be applied to all levels; rather different discovery approaches should be
designed to cover such heterogeneity and roles diversity. To that end, an approach which is
conceptually similar to the above described process might be used, tuned according to the inherent
characteristics of each layer, turning into the following tentative general framework:

Figure 5. mF2C general discovery framework

The abstraction layer represented in this figure is responsible for hiding the details of the underlying
network technologies from the upper layer. This upper layer consists in two elements: a publisher
and a listener. The publisher is mainly in charge of framing mF2C-compliant discovery messages and
sending them either to its parent or to its children. On the other hand, the listener is responsible for
capturing these mF2C-compliant messages and interpreting them.

However, other possible strategies may be also used, based on enriching existing contributions such
as for example NDP (Neighbour Discovery Protocol [12]) in IPv6.

3.2 Identification and Naming

The identification process by which every device participating in the mF2C environment gets a
unique identifier (ID_key), is the first action to perform in order to get the device ready for using the
mF2C system.

Previous to the registration, the user should download and install the mF2C agent in every device
he/she wants to use in the mF2C system. It is worth noting that the download and installation
method may vary depending on the device’s operating system.

Once all user’s devices have the mF2C agent installed, the user must obtain a valid ID for each one of
his/her devices (device_ID). To that end, every user (being user a person, institution or entity) must
register into the website enabled for the mF2C service provider. The registration process will be
done only once per user, institution or entity, regardless the number of devices he/she/it wants to
use in the network.

During the registration, the users will access to a public website hosted by the mF2C service
provider. Registration will start when the user registers a valid electronic mail address and accepts
the use conditions. Afterwards the system will generate a unique user secret key (USK), so-called
ID_key, which will be unique per user.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 16
D3.3 Design of the mF2C Controller Block (IT-1)

The ID_key, will be downloaded into the user’s device after the successful registration and in
addition, an email will be sent to the user for ID_key recovery purposes. Options to recover, update
and revoke the ID_key will be included in the same website.

Once the user has installed the mF2C agent software, registered and obtained the ID_key in his/her
device, he/she will be asked for loading the key in the agent, specifically to the Identification sub-
block in the Agent Controller (AC). Also, an additional string that the user can type or generate
randomly will be required. In no case the same string can be used more than once with the same
ID_key, but the same ID_key can be used with different strings for different devices of the same user
to generate different device_IDs. The Identification sub-block is the component responsible for
generating different strings for the different devices of the same user.

The concatenation of both the ID_key and the additional string will be used for the agent as the
input of a hash function that uses the SHA-256 algorithm [13] to generate a hash value, which will be
the device_ID (Figure 6).

Figure 6. ID calculation in the agent

3.3 Categorization

Devices participating in the mF2C system with the agent software installed, so-called mF2C Capable
resources, should be categorized according to an ontology yet to be designed. The results of this
resource categorization/classification will be necessary to properly and accurately handling the
matching between requested services and resources where services are to be allocated to. Figure 7
presents a preliminary approach to this ontology, showing the class diagram of mF2C resource
categorization. It is worth highlighting that the proposed classification is designed to be open, hence
to include any potential new component to be categorized in the future.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 17
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 7. Resource Categorization

In this first level of classification, the next characteristics are proposed to categorize the resources:

− Hardware: Representing the hardware characteristics of the device. In a second level, we
could consider, for example:

o Power (information of power source, remaining power, etc.)
o Main Memory capacity (total, available, shared)
o Storage capacity (total capacity, available capacity, shared)
o Processor information (number of cores, architecture, Clock speed etc.)
o GPU Information (Graphic card owner information, model, GPU memory, etc.)

− Software: Representing the software included in the device. In a second level the next
subcategories might be considered:

o Operating System
o Virtualization (does it support virtualization?)
o Cloud federation (does the cloud agent support cloud federation?)

− Network: Representing the means and characteristics to connect with the device. In a
second level, we’d propose to consider:

o Technology (WiFi, Bluetooth, Zigbee, LORA, 3G, 4G, 5G, etc.)
o Standards
o Bandwidth (or data rate)

− Cost model: Representing the potential cost the device utilization may bring in.
Subcategories for this bullet may be:

o Non-Chargeable

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 18
D3.3 Design of the mF2C Controller Block (IT-1)

o Chargeable (in terms of price, compensations, advantages, etc.) based on per unit
usage of Processor, Storage, Power, Network etc.

− Security: Representing the security level at the device. Tentative subcategories may be:
o Network security: YES/NO
o Data security capabilities: Private, Protected and Public
o Device Security: The Device that participates in the system has the hardware level

security or not: YES/NO

− IoT: Representing the set of potential devices connected to the device. For example, does
the device have IoT devices connected? Which are the characteristics of these devices? A
second level may include:

o Sensors (Type: Temperature, Humidity, Proximity)
o Actuators
o Communicating Node: Access points, gateways to transmit data between

sensors/actuators to the mF2C capable device.

− Behaviour: Representing how the device behaves according to different parameters. Some
of these parameters can be characterized by either the same node, or the node’s leader.
Below a list of potential characteristics is presented:

o Lifespan. This can be handled by the node itself.
o Mobility (It is mobile or not). This can be handled by the node itself
o Leadership capacity: A leader or backup should be able to attach multiple mF2C

agents.
o Reliability. This is ranked by the leader.

The design of the ontology to be used for resource categorization will have a direct impact on the
database design proposed in Section 6.

3.4 Policies

In this section, some of the policies that will rule the functioning of the resource management
modules are described. Any entity (virtual or physical devices) willing to join the mF2C system –
therefore operating under the command of these polices–, must have the agent properly installed
and configured.

At this stage, policies presented below are very generic, thus they can be used in a wide range of use
cases. Nevertheless, new policies with a higher complexity level are expected to come up in the
future.

3.4.1 Leader and backup node selection

Every fog area will comprise a leader node, at least one agent, and a backup node when possible.
Below are the policies that describe how those roles are assigned:

− Every node must calculate a function value FAfunc, using as input the information obtained
from the resource database.

The FAfunc is based on a set of elements and their respective weights. The elements of the
function may vary according to the use case, for example:

𝐹𝐴𝑓𝑢𝑛𝑐 = (𝑤1 × 𝑐𝑝𝑢) + (𝑤2 × 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑝𝑜𝑤𝑒𝑟) + (𝑤3 × 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦) + (𝑤4 × 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)

+ (𝑤5 × 𝑠𝑡𝑜𝑟𝑎𝑔𝑒) + (𝑤6 × 𝑚𝑒𝑚𝑜𝑟𝑦) + (𝑤7 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

The weight factor (𝑤𝑖) assigned to every element of the equation enables weighting the
entities according to the administrator preferences or use case needs. It is yet to be
designed how the distinct elements, for example mobility, are measured.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 19
D3.3 Design of the mF2C Controller Block (IT-1)

− The leader of a community will be that entity with the higher FAfunc value.

− In the case of two or more nodes with the same FAfunc value, the leader will be the non-
mobile node. If more than one satisfies this condition then the leader will be chosen
randomly.

− The backup node will be the node with the second highest FAfunc value.

− When two or more nodes share the second higher FAfunc value, the backup will be the non-
mobile node. If this condition is satisfied for more than one node, then the backup will be
the node with lower hops to the leader. In the case of two or more nodes meeting both
conditions the backup node will be chosen randomly.

− The nodes that are not playing the role of leader or backup will assume the regular node
role.

− Every x seconds the backup node will check with the leader node if new updates are
available. In this case, x can be a fixed or a dynamic value. It will be fixed when it is chosen
by the system administrator and dynamic when the system determines the optimal value
according to the size of the community population or any other parameters.

The fog areas will consist of different nodes (devices members of the mF2 system) with a common
leader node and backup node. It is still under study how to decide which are the nodes belonging to
a fog area, but in any case, these nodes must have connectivity to the leader node.

3.4.2. Discovery policies

Regarding discovery strategies, the mF2C system should cover different kind of policies. For

example, considering the policies related to the leader some of them are the frequency of

advertisement beacons to find new “children” as well as the frequency of the “keep alive” messages

to know if the leader’s children are still there.

The first policy pertaining to the discovery module is related to the transmission frequency of
advertisement beacons. This frequency will be dynamic and may be adjusted based on historical
arrival patterns of contributors in a leader’s area. It can also be tuned according to how urgently the
leader needs resources from the potential contributors.

The second policy is related to the maintenance of the discovery state and it consists in determining
how often the leader transmits “keep alive” messages. These messages are used by the leader to
infer the user absence, when the latter stops sending them for a long period of time. This policy will
take into account the need to minimize the transmission cost at the user device side while ensuring
that the user-leader association is kept alive as needed.

3.5 Data Management

In an IoT context, most data is generated at the edge of the network and may be transferred more
or less frequently to a repository, either centralized or distributed. Such data can then be accessed
by the users’ applications to implement the catalogue of smart services. In addition, these services
can also generate other kinds of data at any other level in the platform, such as new data derived
from calculations using different IoT sources, which may also be stored and consumed by
applications.

Since data may be of arbitrary types not known a priori (sensors measuring different kinds of
observations under different parameters, different kinds of data generated by applications, …), and
their intended behaviour may vary depending on the application, the application developer must
define the classes and methods that implement the most appropriate data structures in each case.
For instance, one such class may represent a sensor, or a dataset containing a certain kind of data
such as temperatures, to which the application can request access according to the access methods
defined (e.g. get all the temperatures within a period of time, get the highest temperature in the last

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 20
D3.3 Design of the mF2C Controller Block (IT-1)

month, get the current temperature, …). We may also consider the definition of some common
attributes to all data to ease the data discovery, such as for example geographic device location,
type, time stamp, etc.

Internally, this class may either connect to a sensor to get the data on demand, or just return it
because it is already stored in the objects of the class. The developer will choose one of the two
options depending on the application requirements. For instance, if a complete history of
observations is required, the class needs to periodically get data from one or more sensors and store
it. The data management functionality will enable access to the data in this class from any node
where the application using the class runs. If only real-time observations are needed, then the class
might request data from the sensor(s) when required, without the need to store it.

With this mechanism, the data management functionality provides a uniform object-oriented
interface for applications to access any kind of data in the platform, regardless of its location, of its
source (data provided by an IoT device or generated by the application itself), and of whether it is
persistent or volatile. Part of the functionality required to achieve this behaviour corresponds to the
Platform Manager and is described in D4.3. The data manager in the Agent Controller is in charge of
the following functionality, when receiving the corresponding request from the Platform Manager in
the same agent:

− Storing data in the form of objects

− Retrieving an object (or part of it) given its OID (Object ID)

− Storing/modifying an object (or part of it) given its OID and the new/modified data

− Implementing “queries” over a collection of objects

− Deploying a set of classes when the platform manager requests it

These functionalities are implemented by extending the data service component in dataClay [14],
and its deployment in the overall mF2C architecture is to be decided. It seems reasonable to
consider that fog caches more recent data and cloud stores persistent data.

Storing/retrieving/modifying data objects

In order to store objects, dataClay uses a key/value store where the key is the OID and the value is
the serialized version of the object data. In the current version we are using PostgreSQL, though any
other Key/value store would also work.

With respect to the serialization, dataClay does not use the standard serialize method because it
uses reflection and adds too much overhead to the process. Instead of using the standard
serialization, dataClay automatically builds an optimized one for each class. To be able to build this
optimized serialization, classes need to be registered into the system before an object belonging to
that class can be stored. With the information of the class (fields, types, and methods), dataClay can
implement a perfectly optimized serialization method that does not use reflection because it already
has all needed information.

It is important to understand that complex objects such as collections or objects with references are
not stored as a single object. For instance, a collection with N objects will imply storing the N objects
using their own OID, and then another one with the collection information that will also have an
OID. This behavior mimics the way data is stored in memory by object oriented programming
languages where OIDs are object references and each object is stored in its own portion of memory.

Implementing queries over a collection of objects

DataClay offers two mechanisms for querying on collections. The first one is to implement an
iterator that iterates over some of the collection objects. This can be implemented when
implementing the collection class. The second option is to implement a method that iterates over all
elements in the collection and checks which ones fulfil the query constraints.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 21
D3.3 Design of the mF2C Controller Block (IT-1)

Furthermore, like in all databases, we can implement indexes (or similar structures) to speed up
queries.

It is important that all these query methods are registered with the class so they can be deployed in
any agent controller with objects of that class, and thus enable them to execute such queries.

Deploying a set of classes

As we can see, it is important to have information on the class fields and type of all objects as well as
the implementation of some methods such as iterators, queries, serialization, etc. For this reason,
agent controllers need to be able to deploy classes (currently Java and python) in order for the class
loader to be able to load the important information of the class and thus use the right serialization
and query methods.

3.6 Monitoring

Instrumentation of each resource will be carried out by the Monitoring framework which will deploy
a collection of probes that will capture telemetry relating to the “full stack” of a service deployment.
This will feed the Analytics module of the Platform Manager with a view to extracting optimal
hardware and software configurations for the placement of services. Metrics will include:
benchmark (e.g. per query latency), Middleware/Database, system metrics (e.g. per core, per socket,
system utilization), hardware counters (e.g. Processor Counter Monitor) and environment (e.g.
temperature, power consumption).

Each probe will be categorized as a Collector, Processor, or Publisher.

− Collectors are software probes collecting any form of metric from any software source.
Examples include the host operating system, hypervisor or Virtual Machine, guest operating
system, middleware, or hosted application.

− Processors are responsible for passing captured data through aggregators that analyze and
perform some action on the data, e.g., calculating mean, standard deviation, etc. The results
of one probe may influence the collection frequency of another, e.g., battery life impact the
collection of a disk I/O probe.

− Publishers will take processed data to be published to arbitrary destinations. Typical
endpoints will include time series databases (eg, InfluxDB), message queues (eg,
Mosquito/MQTT), or analytics engines.

A typical example of a probe would be one that queries Intel PCM (Performance Counter
Monitor). This utility provides a set of metrics that allows the acquisition of data regarding
internal processor events, including information about components found on the processor chip
such as the memory controller, cache controller, etc.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 22
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 8. Each monitoring probe will be required to register before collecting

As each probe on the Agent Controller has the potential to publish telemetry at any arbitrary
location in the hierarchy of the mF2C system, this will make querying of these metrics difficult within
the Platform Manager. As such, all probes will be required to register with the Distributed Query
Engine module of the Platform Manager so that it knows where to retrieve metrics for that
particular node. This will allow the query engine to provide a single API that abstracts access to
publish locations of metrics.

Each probe will also register with the Platform Manager’s Intelligent Instrumentation module so that
it can analyse the output with a view to throttling publishing frequencies depending on the output of
analysis, e.g., anomaly detection, battery degradation, etc.

A typical example might be a probe that collects 10mb of telemetry data per minute. However, if
nothing of interest (anomalies, data spikes, etc) has occurred during that time window, the publisher
could be prompted to only publish that minute’s average therefore utilizing less storage space.
Similarly, if an anomaly was detected during this 1 minute window, the publisher could actually
publish the entire 10mb of telemetry data to aid the identification of the root cause.

A number of approaches exist to aid adjusting publishing frequencies based on anomaly detection
include:

− ”Tukey” statistical analysis

− Contextual using Term Frequency

Seasonal Hybrid ESD techniques for detecting anomalies in seasonal univariate time series.

3.7 Core Resource Management operation

In Figure 9 we show a workflow putting together the main (designed to the core functional)
operations of the resource module in the Agent Controller, showing the leader registration, pre-
registration, user registration, device identification, device discovery, post-discovery maintenance
and disconnection operations.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 23
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 9. Workflow including: Registration, identification, Discovery, Key distribution.

3.7.1 Workflow description

It must be highlighted that since all control communication is supposed to be managed by the PM,

all messages included in Figure 9 generated by the different AC blocks are first sent to the PM to be

forwarded outside the agent towards the leader.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 24
D3.3 Design of the mF2C Controller Block (IT-1)

Leader registration

1. Register

The chosen leader would be registered at the cloud agent. The policies to select the leader and the
backup leader are still to be defined. Either way, these policies may depend not only on the agents’
capabilities but also on the services and their requirements. Policies may require the backup leader
to be registered at cloud or may not.

2. Provide keys

The cloud agent provides keys to the leader, and to the backup leader when necessary, for providing
authentication and secure communication. The functionality to provide such keys at the cloud agent
is still to be defined. One potential approach as described in D3.1 focusses on using a decoupled
security architecture responsible for generating and distributing keys.

3. Authentication

According to the keys, the leader and the cloud agent will be mutually authenticated and the leader
is authorized to become a leader.

Pre-registration

4. Request mF2C app:

This is a one-step process involving the mF2C user and an app store such as the conventional ones,
be it an existing one or a new one. The goal is to get the agent software to be installed on the user’s
device to make it mF2C-capable.

5. Download mF2C app

The mF2C app is downloaded in the user device and ready to be configured. The mF2C app should
support different systems (Windows/Linux/Android/IOS).

User Registration

6. Register

The user registers at cloud basic information that can be used for statistical purposes and as a result
the system gives a secret key to the user, referred to as Identification key (ID_key). The information
that the user must register and the moment of the registration are not defined yet. Indeed, the
registration process could take place before, during or after the user is downloading the mF2C app.
In the two first cases, the registration must be done through a web form, in the third one, using a
form included in the application.

7. Provide Identification key (ID_key)

Once the user has submitted the registration form to the mF2C service provider (wherever it is), it
will return the Identification key, (ID_key) for the user.

Device Identification

8. Generate device_ID

The device_ID will be calculated using a hash function with two inputs: the Identification key
(ID_key) and an additional string (any string the user wants to include to differentiate among his/her
devices, policy yet to be defined). The output of the hash function will be a hash value, the
device_ID, identifying the specific device of that user. If the user has different devices the same
ID_key is used but different strings will be used to generate the different device IDs.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 25
D3.3 Design of the mF2C Controller Block (IT-1)

9. Categorize resources

The resource categorization module includes a function collecting the information about storage,
processing, memory, networking, platform, power source etc. This information will be sent to the
leader at a later stage.

Device Discovery: Ready to be discovered

Once the configuration steps are successfully accomplished, the device is ready to be discovered as
soon as it enters an mF2C area.

10. Send “Welcome” message

The leader periodically broadcasts “Welcome” messages within its range, in order to announce that
mF2C is enabled in the area.

11. Ack including device_ID

Since the device (with the mF2C app) is passively listening to “Welcome” messages, it automatically
detects these special messages when it reaches an mF2C area. So, it acknowledges receipt of these
messages by sending an ACK including its device_ID and ID_key identifying both, device and user
respectively.

12. Is known?

The leader checks the device_ID in its database. Two cases may occur:

Case1: No

13. Provide keys:

If the device_ID does not exist in the leader database, then the leader provides keys according to the
device_ID (and any other attribute if needed). Same as step 2, the functionality responsible for keys
provisioning is yet to be defined

Case2: Yes

14. Ack device is known

If the device_ID exists in the leader database, the device already has its keys.

15. Authentication

The leader and the device will be mutually authenticated and the device is authorized to join the
leader’s area.

16. Send resource information

After the successful authentication of a device, the resource categorization block will retrieve the
current status of the device by updating the information collected in step 9. That means, remaining
storage, power, processing capabilities, information about the current availability of Memory,
Networking facilities etc. This information is forwarded to the leader.

17. Create/Update corresponding DB entry

According to whether the device is known or not, the leader will either create or update the DB
entry corresponding to that device, using the information received at the previous step.

Now that the necessary preparation steps have been done and the device is associated with the
leader, the device becomes an mF2C agent and is ready to receive execution assignments from the
leader.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 26
D3.3 Design of the mF2C Controller Block (IT-1)

Post-discovery maintenance

18. Gather device resources

The leader gathers information about all its associated devices (i.e. mF2C agents in Layer 2 in the
resource topology of Figure 1) and processes it to be then forwarded to the cloud agent. The
processing may require aggregation or compressing strategies to reduce the amount of information
to be forwarded, while guaranteeing accuracy enough.

19. Send resource information

Periodically the leader will send information about its “children” (associated devices) to the cloud
agent. This will allow the cloud agent to acquire a global (aggregated/compressed or not) view of the
different resources contributing to the system.

20. Keep alive

This Keep alive is periodically sent by the leader to check the status of the associated devices it is
managing. If no response is received from a particular device, the leader assumes that it has left the
area or that it is dead for some reason. The keep alive is different from the welcome messages in the
sense that it is likely performed as a unicast and after the connection between the device and the
leader has been established.

21. Ack including updated resource information, if any is received

The device acknowledges receipt of the keep alive. To that end, the device sends an ACK message.
This message may be enriched with resource information updates.

22. Detect that no ACK is received

The leader detects that no ACK is received. There will be a policy including the number and timing of
re-attempts.

23. Update database

Depending on result on steps 21 and 22, the database will be updated with the resource information
when the ACK is received, or when it is not, marking the device as disconnected or finally removing
the device from the database.

The leader may also include a policy looking for a finer device state description, for example defining
states like “ok” (active) /”down” (if they have been gracefully shutdown, drained or retired)/
”unreachable” (if consecutive keep alive messages are not coming back, in which case the device will
automatically be considered as down after X re-attempts)/ “intermittent” (if the keep alive messages
are flapping, like if the device has a weak signal), etc.

Disconnection

24. Bye

The device explicitly sends to the leader a “Bye” message indicating its intention to leave the area.

25. Change device’s status into “Disconnected”

The leader will update the database record for that device to indicate that it is “Disconnected”.

26. Remove device’s resource information from cache after timeout

For efficiency reasons and in order not to keep obsolete information in its cache, the leader will
remove the device’s resource information when a pre-configured timeout elapses (yet to be
defined).

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 27
D3.3 Design of the mF2C Controller Block (IT-1)

4. Service Management Design

As described in deliverable D2.6 the service management block in the agent controller is responsible
for the orchestration of local services. Its main functionalities include:

− Categorization of services and management of categories.

− Mapping of tasks.

− Allocation of tasks

− QoS provisioning

4.1 Categorization

As described in the Resource Management block, the Agent Controller oversees filling the tables to
be accessed by both, the Agent Controller and the Platform Manager. As for resources, a tentative
classification of mF2C capable resources according to a categorization strategy is presented in
Section 3.3. As for the mF2C services, we must remind that the request for executing a service is
always reaching out to the Platform Manager of an Agent. Once the service request is received, the
Platform manager will start a set of steps, basically consisting on decomposing the service on tasks,
selecting the suitable agents where executing these tasks, etc., all deeply described in the
deliverable D4.3, focusing on the Platform Manager. Besides that, the Platform Manager will also
forward the service to the Agent Controller, specifically to the Service Categorization module, where
the service will be classified according to a defined categorization policy, as the one proposed in
Figure 10 (a different representation of Service Categorization, as a class diagram is shown in Annex
I). Afterwards, the information about the service and its characteristics will be added to the Service
Database. Similar to the Resources, the Agent Controller is in charge of filling the databases to be
consulted by both the Agent Controller and the Platform Manager.

The service categorization process included in the mF2C system, is considered critical to efficiently
and successfully execute services. Indeed, the service categorization process provides the
information about the type of service and its requirements that must be used by the mapping
strategy to allocate the optimal resources for a successful service execution. A preliminary approach
to categorize the services in a mF2C system is based on the following aspects:

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 28
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 10. Service categorization

− Context Based: Services can be classified according to the Context scenario as: Multimedia,
Educational, Monitoring, Health, Governmental, Transport, Scientific Purpose, Business
Oriented, Environmental, etc.

o Location Based: Based on the location of the service execution and the IoT’s data
source, we can categorize the services as:

o Cloud Level: The service execution has been performed on the Cloud side agent.
o Fog Level: The service has been executed on the Fog agent.
o IoT Level: Real time applications require data collected from IoT devices.

− Cost Model Based: Services might be free of cost or chargeable. So, based on the Cost Model
services can be further classified into two parts:

o Non-Chargeable: Free of Cost
o Chargeable: Payment required for using the service or to execute the application.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 29
D3.3 Design of the mF2C Controller Block (IT-1)

− Security & Reliability Based: Services may be classified as:
o Fully Secure: Services requiring “fully” network, data and device security as well as

reliability guarantees.
o Preferable: Services requiring limited security and reliability.
o Indifferent: Service not requiring security and reliability

− Data Characteristics Based: Related to services requiring data to be executed and producing
data once executed. Hence, based on the data input and output for the service, services may
be categorized as:

o Data In: Based on the input data, services can be categorized into three types: i) High
Volume, ii) Medium Volume or iii) Low Volume

o Data Out: Based on the output data services can be categorized into three types: i)
High Volume, ii) Medium Volume or iii) Low Volume

− Service Requirements: Considering hardware, network and time requirements, services can
be classified according to:

o Network Requirements: Requiring i) High or ii) Medium or iii) Low Bandwidth
o Storage Requirements: Services may need: i) High or ii) Medium or iii) Low Storage.
o Processing Requirements: Requiring i) High or ii) Medium or iii) Low Processing

capacities.
o Power Requirements: Requiring i) High or ii) Medium or iii) Low volume of power.
o Time Requirements: It may be i) Long ii) Moderate or iii) Short duration time

required to execute the service.
o Real Time: Service demanding any real time constraint: YES/NO
o Priority: Based on the priority, a service can be categorized into three classes: i) High

or ii) Medium or iii) Low Priority Service.

Besides including the information above, an additional, deeper level of granularity is envisioned.
Recognized the fact that agents will execute tasks (low level execution), a classification may also be
added at task level, to specify tasks requirements and characteristics. Consequently, we propose the
Service Database to include information not only related to the service but also to the tasks building
the service, as follows:

− ComputingUnits: Required number of computing units. This is used when there is no need to
specify constraints on the type of processors and number of cores.

− ProcessorName: Required processor name

− ProcessorSpeed: Required processor speed

− ProcessorArchitecture: Required processor architecture

− ProcessorType: Required processor type

− ProcessorPropertyName: Required processor property

− ProcessorPropertyValue: Required processor property value

− ProcessorInternalMemorySize: Required internal device memory

− processors: This is used to specify multiconstraints on the processor. A task, for example, can
be executed on a CPU with 4 cores (computingUnits) or a GPU with 16 cores.

o computingUnits: Required number of computing units
o name: Required processor name
o speed: Required processor speed
o architecture: Required processor architecture
o type: Required processor type
o propertyName: Required processor property

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 30
D3.3 Design of the mF2C Controller Block (IT-1)

o propertyValue: Required processor property value
o internalMemorySize: Required internal device memory

− MemorySize: Required memory size in GBs

− MemoryType: Required memory type (SRAM, DRAM, etc.)

− StorageSize: Required storage size in GBs

− StorageType: Required storage type (HDD, SSD, etc.)

− OperatingSystemType: Required operating system type (Windows, MacOS, Linux, etc.)

− OperatingSystemDistribution: Required operating system distribution (XP, Sierra, openSUSE,
etc.)

− OperatingSystemVersion: Required operating system version

− WallClockLimit: Maximum wall clock time

− HostQueues: Required queues

− AppSoftware: Required applications that must be available within the remote node for the
task

4.2 Mapping

The mF2C control architecture leverages a distributed and hierarchical control topology intended to
map service requests into the most suitable resources for a successful service execution. The service
requests can be decomposed into tasks in the Task Management block of the Platform Manager, and
the Task Scheduler block decides where each individual task will be executed.

For example, let’s assume that the service execution request reaching out the Platform Manager of
the agent serving as leader in area 1, is decomposed into four tasks. A potential decision about the
mapping procedure is shown in Figure 11 and may turn into:

− Task 1 (T1) requires data only available in area 2 of the network. This means that the request
to execute T1 must be forwarded to the agent in the cloud (according to the mF2C
hierarchical architecture), to be later forwarded towards the agent in area 2, responsible for
the mapping strategy in that area.

− Task 2 (T2) requires resources available in the local resources in area 1, so the request to
execute T2 is forwarded in this agent.

− Task 3 (T3) requires resources available in one of the agents in area 1, so the request to
execute T3 is forwarded to this agent.

− Task 4 (T4) imposes high demanding resources capacities, so the request to execute T4 is
forwarded to the agent in the cloud.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 31
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 11. Mapping of different service tasks

The process of mapping each of the mentioned tasks can be presented in the following steps, see
Figure 12:

Step 1. After receiving the task request from the Platform Manager, the Agent Controller forwards it
to the Mapping block.

Steps 2 and 3. The Mapping block will then look at the database to check if the requested task
already exists, thus getting a positive or negative answer. If the task exists it means that this task or
method has been already executed in this device and it has information stored about it.

Step 4. If the answer is negative, the Mapping block will ask the Categorization block in the Service
Management, for classifying the received task according to its characteristics. This block will work in
tight cooperation with the Categorization block in the Resource Management. If the answer is
positive this step is skipped.

In principle, from this step the mapping would consist in selecting the resources matching the
requested task. However, when there is no possibility for choosing resources in this specific device,
there is no need for running again a matching between the requested task and the local resources –
the Platform Manager has already done this matching when selecting this agent controller for
execution. In this case, the Mapping functionality finishes in step 4.

On the other hand, when distinct resources may be selected in the same device, it is necessary an
additional matching step in this mapping module. Possible options of the AC for selecting resources
are when either some virtualization is enabled or when the agent controller has attached computing
devices non mF2C capable. By an mF2c non capable device we mean devices with computing
capacity but without capacity to have the mF2C agent installed. In that case, the AC is in charge of
mapping some of the tasks to these small devices. This matching will consist on steps 5, 6, 7 8 and 9
which are described in the next paragraphs.

Step 5. The next step is intended to contact the block Policies in the Resource Management to see
which rules should be applied to match the task requirements.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 32
D3.3 Design of the mF2C Controller Block (IT-1)

Step 6. Moreover, for each task request, the Mapping block must cooperate with the Profiling block
in the User Management in order to find out if a user constraint for the expected QoS is in place. If
such constraint exists, it must be implemented.

Steps 7 and 8. The Mapping block requests the database for information about local resources to
select the appropriate resources.

Steps 9: And finally, the selected resources are allocated. It is worth mentioning that this allocation
module not only runs during this mapping process in the runtime execution phase, which are the
steps described in this section; but also during the deployment phase when the lifecycle manager (in
PM) deploys the selected resources.

This entire process is shown in Figure 12.

Figure 12. Mapping block in coordination with other blocks in Agent Controller

4.3 Allocation

This module is responsible for the allocation of available resources to the various requests, trying to
meet security and privacy rules, cost models, while guaranteeing overall optimal resources usage.

This module can be call during the deployment phase by the Lifecycle model in order of reserve
selected resources, as it is described in D4.3. As well as during the mapping process, in the runtime
execution phase. In this last case, it is called once the database is read (thus providing local
resources availability) and the mapping request for the available resources has been determined. It
inherits general categorization in step 4, policies verification in step 5, and user profiling
requirements and constraints in step 6.

Previous steps should guarantee to cover Priority, Time related and Critical (low latency)
requirements.

The Allocation block assigns and allocates the appropriate computing (CPU, RAM), storage (disk),
networking (bandwidth), and energy (battery slots) resources to be able to run the services in local
resources. Finally, the Agent Controller will monitor the execution of the services checking the
fulfilment of QoS attributes.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 33
D3.3 Design of the mF2C Controller Block (IT-1)

4.4 QoS Provisioning

The service management block also needs to check and guarantee that the service meets the
requirements specified by the user and the resource management module. This block is responsible
for QoS provisioning on a service task level. For each service, it will contact the SLA Management
block in the Platform Manager to get information about the expected service.

The QoS parameters (aligned to successfully meet the SLOs defined for a particular SLA) to be
considered are not limited to the parameters used in traditional networking. Indeed, in addition to
latency, jitter, bandwidth, among others, various features may also impact the observed QoS, such
as:

− Energy consumption: high energy consumption may result in the rapid unavailability of
resources dependent of battery.

− Data quality: quality of data provided in a response to the service request.

− Bandwidth, Capacity and Throughput: indicate the capacity of data which can be sent over a
link within a given time.

− Reliability: measures the ability of the system or its individual components to perform its
required functionalities under stated conditions for a specified period of time.

These are only some of the parameters that may be used for QoS measuring, and thus the list can be
extended to add any additional attribute to meet future services demands. However, it is worth
mentioning that QoS requirements must be service-aware, in other words, for different service tasks
distinct sets of parameters may be used. For the first iteration, the QoS deployment will focus on the
service execution time as the main critical parameter.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 34
D3.3 Design of the mF2C Controller Block (IT-1)

5. User Management Design

The User Management module is part of the Agent Controller component and it is responsible for
managing the profiling and the sharing model properties of the users who have access to the mF2C
system and the applications running on top of it. This module is also responsible for enforcing the
QoS related to these properties.

This module is composed by three subcomponents (Profiling, QoS Enforcement and Sharing model)
that will interact with other Agent Controller and Platform Manager modules. On one hand, it will
interact with other Agent Controller subcomponents in order to set and get the profiling and the
sharing model properties. And on the other hand, if some of these properties or constraints are not
being fulfilled, then this module will call the Platform Manager component in order to take the
required actions.

Baseline Technologies

The user interface must be bespoke and then it needs to be designed and developed from scratch
being a part of the Agent Controller component.

Internal Architecture

Next picture depicts the User Management’s subcomponents and their interactions with other mF2C
components, see Figure 13.

Figure 13. User Management’s subcomponents

5.1 Profiling

A user profile is the collection of personal data related with a specific user (be it both, the user
owner of the device and the mF2C consumer client executing a service) and digital representation of
person’s identity. It can be also considered as a logical representation of a user model. The user
profile information can be extended or refined with user’s preferences and behaviour.

This subcomponent is responsible for the setup and management of such user’s profiles with roles
and permissions. The functionalities included in this module are the following:

− Set / store the profiling properties

− Get / read these properties

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 35
D3.3 Design of the mF2C Controller Block (IT-1)

The properties related to these roles and permissions/authorizations managed by this module
include the following:

− Access control list (ACL), including both
o Services allowed to be used by the user
o Services allowed to run in their devices

− Max. number of services allowed to run in their devices

− How to join the mF2C system:

− As a consumer client, as a contributor, or both

− Use of GPS or any other device to determine the location or context

− Use key functions related to data encryption to preserve the identity and secure
communications of the user

− Security levels defined for different data flows related to the user

− Ability for data to be shared

− Users group definitions

− Resource parameters related to QoS conditions, to be guaranteed in case of executing
services, both hosted or offloaded

All these properties should guarantee the modelling of roles, permissions and authorities for the
fulfilment of user’s needs.

When the user downloads and installs the mF2C components in the device, all these profiling
properties are configured with default values, as we can see in the sequence diagram in Figure 14.

Figure 14. Profile properties configuration with default values

Later on, the user will be able to modify them, Figure 15.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 36
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 15. Updating profile properties

When setting the values of these profiling properties, this subcomponent will only interact with the
Agent Controller database. Then it will also offer an interface to the other components in order to
get / read the information about the user’s profiling.

5.2 Sharing model

The sharing model subcomponent is responsible for the definition of the device’s shareable
resources. The functionalities included in this module are the following:

− Definition of the resources that will be available to the mF2C applications

− Definition of rules or constraints in order to establish not only the amount of resources to be
shared, but also the conditions from which these resources should be increased, decreased
or not shared at all

− Definition of reward mechanisms for these resource contributions, like some kind of service
execution credits, economic rewards, etc.

− Get / read these defined shareable resources

The shareable resources managed by this module include the following ones:

− Max. CPU percentage usage

− Max. RAM usage

− Max. disk usage

− Max. amount of bandwidth usage

− Battery usage limits

− Local Data and/or file systems that could be shared with specified users or groups

− Other not yet envisioned

In the same way, as with the profiling module, when the user downloads and installs the mF2C
components in the device, all these shareable resources are configured with default values, as we is
shown in the following sequence diagram, Figure 16.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 37
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 16. Configuration of shareable resources when installing mF2C software

The sharing model subcomponent will interact with the following Agent Controller modules:

− It will make use of the Agent Controller Database, in order to write and read the values of the
defined sharing model properties.

− Then, it will also call the Resources Management - Categorization module interface, in order to
get the information about the current device’s resources.

Finally, this subcomponent will also offer an interface to the other Agent Controller components in
order to get the information about these shareable resources defined by the user.

5.3 QoS Enforcement

The QoS Enforcement module is responsible for enforcing that the mF2C services running in the
device meet the constraints defined by the user. The functionalities included in this module are the
following:

− Check if the profiling properties are met

− Check if the shareable resources constraints are met

− Send a warning to the Platform Manager if some constraint is violated

As it is shown in the following sequence diagram, Figure 17, this module consists, basically, in a loop
that is continuously checking that the mF2C applications running in the device meet the user’s
constraints.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 38
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 17. QoS enforcement working

This subcomponent will interact with the following mF2C components:

− It will make use of the Agent Controller Database, in order to get all the information about
the user’s profiling and sharing model.

− Then, it will also call the Resources Management - Monitoring module interface, in order to
get the information about the resources used by the mF2C applications.

− Finally, if the applications running in the device do not meet the constraints defined by the
user, this subcomponent should send a warning to the Platform Manager - Service
Orchestration module in order to take the required actions, like removing or halting the
application.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 39
D3.3 Design of the mF2C Controller Block (IT-1)

6. Data Base Design

In order to perform the designed functionalities in mF2C, a database including information about the
services, resources and users participating in the platform is required. This database can be accessed
both by the Agent Controller and by the Platform Manager, by means of a single interface that
encapsulates the different kinds of data that the database contains, as seen in Figure 18.

Figure 18. Conceptualisation of the database

Conceptually, the database must include three main kinds of information:

− Services, including their characteristics, requirements, and SLOs.

− Resources, including their characteristics and how they are interconnected in the infrastructure

− Users, including their relevant data and their preferences on how to participate in the
infrastructure.

Since many of these user preferences depend on the resources that the user contributes to mF2C,
and also on the services that are executed in the platform, there are strong relationships between
the three kinds of information. Thus, we define a single schema that specifies these relationships
and provides a global view of all the information that needs to be stored in mF2C. The fact that we
define a global schema does not imply that we will have a single database that centralizes all the
information. Instead, this schema and, more specifically, the database interface that encapsulates
it, will provide access to the information distributed among the different resources in the platform,
in such a way that any agent can access all the information it requires (about its own resources if it
is a regular node, and about its own and its children’s resources if it is a leader node).

6.1 Database schema

The UML class diagram in Figure 19 depicts the concepts, properties, and relationships between
concepts that mF2C needs to store in order to perform its functions, as designed in D3.3 and D4.3,
independent of the final technology used in its implementation.

Database	Interface

Resource	
information	base

Service	
information	base

User	information	
base

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 40
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 19. mF2C database schema

In the following we describe each of the entities included in the class diagram.

Resource

Represents a device that is part of the mF2C infrastructure. Each resource has an id, provided by the
identification functionality, calculated from the ID_key of the user that owns the resource,
represented by the association with the User entity.

The rest of properties of Resource correspond to the characteristics defined in the resource ontology
used for the categorization of resources.

The association Is connected to indicates a physical direct connection between resources.

Each resource has an associated ResourceSharingModel.

Agent

The concept Agent and its subclasses represent the role that a resource plays at a given time in the
infrastructure, and how the clusters in mF2C are organized. If a resource is regular then it has a
leader, and a leader has at least one regular resource assigned. Also, each leader has a backup.

User

Represents a registered user, who can own several devices (resources in mF2C). An email is required
for registration, and each user is assigned a unique secret key represented by ID_key. It has an
associated UserProfile.

UserProfile

Represents the user’s roles and permissions, applicable to the user participation in mF2C as a whole.
A user can participate as a service consumer, as a resource contributor, or both.

The relationship with Service represents the services or applications allowed by the user.

Those permissions that depend on a specific device are included in the ResourceSharingModel.
ResourceSharingModel

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 41
D3.3 Design of the mF2C Controller Block (IT-1)

Represents the conditions on how the owner of the associated resource wants to contribute such
resource to the infrastructure.
Although not included in the figure, other attributes may be considered, for example depending on
the business model, turning into: list/rent, subscription, pay per use, etc.
The relationship with Service represents the services or applications allowed in the associated
resource.
Service
Represents a service or application that is executed in the infrastructure. It has an identifier and a
state, required by the lifecycle management functionality, which can be deployed, started,
terminated. The rest of its properties correspond to the characteristics used for the service
categorization functionality.
A service is decomposed in tasks, which are the execution units managed by the distributed
execution runtime, and has an associated SLA, to be meet in terms of distinct SLOs, required for SLA
management.
Task
Represents an atomic part of a service that can be scheduled for execution. A task has a set of
constraints or requirements for its execution, used by the task scheduling functionality. The
associated entity ProcessorConstraints represents the set of constraints that refer to the processor
characteristics. In case the task requires several processors, then it can have different processor
constraints for each of them.
SLA
Represents the service level agreement associated to a service. It has an identifier and includes the
content of the agreement, expressed in the JSON standard. The Assessment entity keeps track of the
evaluations of an SLA and their state. Violation rules should be defined for each individual SLO.

6.2 Database Interface

In the following we define the core set of operations that the database interface needs to offer in
order to access the data required by the different functionalities, according to their current design.
This interface can be extended with additional operations required during the implementation.

new_resource(resourceID: String, hw_power_source: String, …)

Creates a new resource, with the id calculated by the identification functionality, and the values for
its characteristics assigned by the categorization. It also creates its associated Agent instance.

get_resource_characteristics(resourceID: String): ResourceInfo

Returns the subset of characteristics of a resource needed to calculate the role of a node as specified
by the policies, grouped in the ResourceInfo structure.

set_agent_role(resourceID: String, role: AgentRole)

 Sets the attribute role of the agent related to resourceID to the value of the parameter role, which
may be Leader, Backup, or Regular.

get_distance_to_leader(resourceID: String): int

Returns the number of hops to the leader of the cluster, obtained through the association “Is
connected to”, needed to apply the node selection policies.

disconnect_resource(resourceID: String)

Sets to false the value of connected of the associated agent.

create_user_profile(email: String)

Creates a new user identified by email, and assigns it a unique ID_key. It also creates its associated
profile with default values as specified by the profiling functionality.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 42
D3.3 Design of the mF2C Controller Block (IT-1)

set_user_profiling_properties(userID: String, profile: ProfileInfo)

Sets the properties of the profile of the user identified by userID to the values specified in the
ProfileInfo structure.

get_user_profiling_properties(userID: String): ProfileInfo

Returns the current value of the profile properties of the user identified by userID.

new_resource_sharing_model(resourceID: String)

Creates a resource sharing model instance associated to resourceID with default values, as specified
by the sharing model functionality.

set_resource_sharing_model(resourceID: String, model: SharingInfo)

Sets the properties of the sharing model of the resource identified by resourceID to the values
specified in the SharingInfo structure.

get_resource_sharing_model(resourceID: String): SharingInfo

Returns the current value of the sharing model properties of the resource identified by resourceID.

new_service(serviceID: String, context: String, …)

Creates a new service, with its assigned id, and the values for its characteristics assigned by the
service categorization.

set_service_state(serviceID: String, state: ServiceState)

Sets the state of serviceID to the value of the state parameter.

get_agents_in_cluster(resourceID: String): Set(Agent)

Returns all the agents in the cluster where resourceID belongs.

create_SLA(SLAid: String, text: String, serviceID: String)

Creates an SLA with SLAid and text, associated to serviceID.

create_assessment(assessmentID: String, SLAid: String)

Creates a new Assessment with assesementID associated to SLAid.

set_assessment_state(assessmentID: String, state: SLAState)

Sets the state of assessmentID to the value of state.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 43
D3.3 Design of the mF2C Controller Block (IT-1)

7. Interfaces Design

Here there will be described the interfaces of the subsystems. UML was used to make easy to
visualize them.

7.1 Agent Controller Interfaces

7.1.1 Diagrams centered in Agent Controller Package dependencies

Below, there will be explained the dependencies between the different packages operating with the
Agent Controller and between the Agent Controller classes themselves.

To make it easier to read, it was split into 3 different diagrams Figure 20, Figure 21 and Figure 22.

Please, note that the different colours of the dependency lines have no special meaning, used only
with the purpose of making easier to understand the diagram and do not get confused with the
multiple lines.

In the same way, Classes that did not have dependencies were eliminated to simplify the view.

Figure 20. Agent Controller and Main Thread package diagram with dependencies

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 44
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 21. Agent Controller and Platform Manager package diagram with dependencies

In this last diagram, Figure 22 Agent Controller and Platform Manager package diagram with
dependencies, you can observe that there are much more classes than in the simplified previous
ones. This is because all classes of the Agent Controller package were included, even the ones which
are not providing services to other packages objects or other local ones than themselves.

Figure 22. Abstract Class Diagram at packet level, centred in Agent Controller dependencies

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 45
D3.3 Design of the mF2C Controller Block (IT-1)

7.1.2. Agent Controller’s Class Diagram

This Class Diagram, Figure 23, is not included in the previously described dependencies due to the
complexity to visualize the document with all those dependencies. The diagram below complements
previous package one and details the methods to implement.

Some methods that apparently (for now), just provide services to their own class, were marked as
private (-), the others were marked as public (+), defining the class interfaces.

Figure 23. Agent controller's Class Diagram

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 46
D3.3 Design of the mF2C Controller Block (IT-1)

8. Illustrative Example

A number of prototypes have been built to illustrate some of the functionalities presented in the
“Core Resource Management Operations“ workflow (Figure 9), such as the registration, device
identification and the discovery process.

8.1 Identification

According with the section 3.2 the identification process can be divided in two logical steps:
registration and device_ID calculation, which correspond to the steps 6, 7 and 8 of workflow of
Figure 9. In the next sub-sections both processes are explained and preliminary frontends are
presented.

8.1.1 Registration

The registration is the process by which the users will obtain the ID_Key. This key will serve two
purposes: (1) identify uniquely users registered in the mF2C system and (2) will be a required input
to calculate the IDs of all the user’s devices, thus, registration must to be done only once per user,
institution or entity.

The registration procedure will start when the user type his/her email address and press the button
“register” in some kind of web page enabled for that purpose similar to the one shown in Figure 24.

Figure 24. Registration frontend

After entering the email address, a process to generate the ID_key should start. This process will

leverage some strategy particularly designed to the mF2C scenario, at this stage yet being an

ongoing work. As a preliminary approach for in-lab testing the project proposes the following

strategy:

− In the first step a script will validate that the user input meets the email address format.

− In a second step, unnecessary characters (like spaces, for example at the beginning and the
end of the input) are removed.

− In a third step, the script will also put the whole string in capital letters and will separate the
username from the email address.

− Fourth step: The username extracted from the email address is manipulated in order of
getting from it four characters. In all the cases the extracted characters are the first, the last
and the two characters in the middle. In the case of usernames which size is an odd number
the three characters in the middle will be extracted and the character in the middle of these

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 47
D3.3 Design of the mF2C Controller Block (IT-1)

three is ignored. The concatenation of these four extracted characters is called auxiliary
string.

− Fifth step: Once the auxiliary string has been extracted from the user’s email it will be
concatenated with the whole user email. The result of this concatenation is the input to a
hash function that uses the SHA512 algorithm. Finally, the hash output will be the user
ID_Key.

The same script will verify if the calculated ID_Key belongs to an already registered user. If that is the

case the script will update the database as a ID_Key recovery and will send the ID_Key as a file to the

user email, otherwise a new record will be created in the database before the ID_Key is sent to the

user.

The registration procedure concludes when the ID_Key has been calculated and sent to the user.

8.1.2 Device ID calculation

Once the user has registered in the system and has his/her ID_Key he/she can start calculating

unique IDs for all his/her devices. The device ID (device_ID) will be a requirement that all the devices

must meet before joining the mF2C system.

The process of computing each device ID is very similar to the activation of any software (Figure 25).

The user will be asked to:

− type his/her email address (the same provided during the registration)

− to provide the ID_Key (received by email in this implemented prototype)

− to provide a unique string for every one of his/her devices (generated randomly in this
prototype).

Before the ID assignation in the user device, an offline validation is performed to check if the email

address is associated with the loaded ID_Key. If the ID_Key pass this validation then the device_ID

can be generated. For this purpose, the SHA512 algorithm is again used. The input of the hash

function will be the ID_Key concatenated with the string provided by the user. In Figure 25 this string

is calculated randomly. The output of this hash is the device_ID.

Figure 25. Device ID calculation frontend (before activation)

In the Figure 26, the fronted is presented once the Device ID (device_ID) has been calculated.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 48
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 26. Device ID calculation frontend (after activation)

8.2 Discovery

In the following, we describe the current implementation of the discovery function detailed in
section 3.1.1 and corresponding in the workflow of Figure 9 to the step 10. In fact, this function has
been implemented using two Linux-based tools, namely hostapd [15] and iw [16]. While the former
is an open source access point implementation offering a built-in option for appending information
elements into beacons and probe response frames, the latter is a tool used for wireless device
configuration allowing wireless scanning and retrieval of information (including vendor specific
information elements) from scan results. Since both tools are run in “user space”, no kernel changes
were needed to support the newly-added mF2C information. In addition, Python scripting has been
used on top of these tools to encode and decode mF2C content at the leader side and the device
side respectively.

In order to show that the mF2C beacon has been properly formed, we use Wireshark [17], a widely-
known network protocol analyser tool. As it can be seen in Figure 27, frame number 664 (red box)
represents an mF2C-enhanced beacon. In addition to the information elements normally contained
in beacons, this frame also includes the mF2C vendor specific information element with the usual
221 tag number. It is recognized by the fact that it uses the mF2C OUI, which is followed by mF2C-
specific data (highlighted in blue at the bottom of the figure).

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 49
D3.3 Design of the mF2C Controller Block (IT-1)

Figure 27. Wireshark Capture showing mF2C Beacon

In order to capture those beacons and to interpret the customized information they contain, a

Python script is run on the receiver device side. Its main role is to parse the scan results returned by

the iw utility looking for frames containing the mF2C OUI. If found, the subsequent payload is

extracted and decoded into human-readable information that characterizes the leader. Figure 28

shows the decoding of an example payload corresponding to the previous beacon. It is comprised of

the leader ID, the service type and the expected reward resulting from contributing resources to the

system.

Figure 28. Beacon detection and content decoding

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 50
D3.3 Design of the mF2C Controller Block (IT-1)

9. Conclusions

First of all, in this deliverable we review the main characteristics of the mF2C architecture proposed
in deliverable D2.6 [1] and then we describe in detail all the main functionalities of the Agent
Controller block. As stated in the mF2C architecture, the Agent Controller is one of the two blocks of
the mF2C agent. One of the main characteristics of the proposed architecture leverages the fact that
any kind of device with enough computing capacity could participate in the mF2C system as long as
it has the mF2C agent software installed. Indeed, the mF2C agent will have all management and
control functionalities to make a device become a participant in the mF2C system. Another
important characteristic of the reviewed mF2C architecture is its organization into a hierarchical set
of devices. Indeed, devices (mF2C agents) are clustered around one of them acting as the leader.

The set of management and control functionalities needed to become a participant in the mF2C
system have been divided into two subsets of functionalities: Platform Manager (PM) functionalities,
described in deliverable D4.3, and Agent Controller (AC) functionalities described in this deliverable.

In short, the PM provides high-level functionalities, including the intelligence to take decisions with a
more global view. Whereas, the AC has a local scope, that is, taking decisions based on this local
scope.

The subset of AC functionalities is divided into functionalities related to the resources, services and
users management. Regarding the resources, the AC is responsible for managing local resources,
considering as local resources the own resources when the agent is a usual mF2C agent; or its own
resources and the resources of its clustered devices (children) when the agent is a leader. In this
sense, the main functionalities of the Resource Management block have been described and
tentative solutions for their implementation have been proposed. The list of the Resource
Management functions is:

− Discovery

− Identification and Naming

− Categorization

− Policies

− Data Management

− Monitoring

In the case of the Services, the AC is only responsible for managing the services (or tasks) executed in
its own local resources –that is, in the resources of the mF2C agent–, independently if it is a leader
or not. If the device is a leader, the services executed in its children are managed by the PM. The
functions of the Service Management are:

− Categorization

− Mapping

− Allocation

− QoS provisioning

Finally, the AC is also responsible for managing the users related to the device where the mF2C
agent is installed. In the mF2C system, we consider that a user can be the owner of the devices, as
well as the client (consumer) executing services in the mF2C system. The three functionalities of the
AC related to the user management are:

− Profiling

− Sharing model

− QoS enforcement

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 51
D3.3 Design of the mF2C Controller Block (IT-1)

This deliverable identifies all functionalities to be developed within the AC and provides different
workflows showing the interactions of the different blocks for some basic operations. It also
proposes a preliminary and basic design of the mF2C database, to be shared by the AC and the PM,
as well as the UML diagrams of the interfaces between the different blocks of the AC.

Once the AC basic functionalities have been identified, the mF2C partners have proposed solutions
for the implementation of some of them. The proposed solutions are a first approach towards the
integration of the different blocks in the AC, as well as the integration between the AC and the PM.

Furthermore, some of these solutions have been preliminary implemented, for example the solution
proposed for the Identification-Naming and Discovery functionalities.

It is important to highlight that all the proposed solutions, both at design level and at
implementation level, are a first approach to the problem to be solved. Although there has been an
intensive communication between partners working in deliverable D4.3 (devoted to PM) and
partners working on this deliverable to avoid incoherencies, in the next steps of the mF2C project,
which correspond to the AC blocks integration, we will refine the AC design in order of being
completely compatible with PM designed in WP4.

Finally, the AC functionalities presented in this deliverable are a subset of the ones envisioned for
the whole project. This set of functionalities corresponds to the first iteration of the project (IT-1)
what intends to have a complete implementation of the mF2C system on month M18. After this first
iteration, the entire set of functionalities of the different blocks of the mF2C agent will be improved,
enriched and even increased.

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 52
D3.3 Design of the mF2C Controller Block (IT-1)

Annex 1. Service Categorization

The diagram below shows the service categorization represented as a class diagram already shown
in Figure 10.

Figure 29. Service categorization

mF2C - Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

Page | 53
D3.3 Design of the mF2C Controller Block (IT-1)

References

[1] «D2.6 mF2C Architecture (IT - 1),» [En línea]. Available: http://www.mf2c-project.eu/wp-

content/uploads/2017/06/mF2C-D2.6-mF2C-Architecture-IT-1.pdf.

[2] «D2.4 Security/Privacy Requirements and Features,» [En línea]. Available:

http://www.mf2c-project.eu/wp-content/uploads/2017/05/mF2C-D2.4-Security-Privacy-

Requirements-and-Features-IT1.pdf.

[3] «D3.1 Security and privacy aspects for the mF2C Controller Block (IT - 1),» [En línea].

Available: http://www.mf2c-project.eu/wp-content/uploads/2017/06/mF2C-D3.1-

Security-and-privacy-aspects-for-the-mF2C-Controller-Block-IT-1.pdf.

[4] «D4.1 Security and privacy aspects for the mF2C Gearbox block (IT - 1),» [En línea].

Available: http://www.mf2c-project.eu/wp-content/uploads/2017/06/mF2C-D4.1-

Security-and-privacy-aspects-for-the-mF2C-Gearbox-block-IT-1.pdf.

[5] «Arduino,» [En línea]. Available: https://www.arduino.cc/.

[6] «RaspberryPi,» [En línea]. Available: https://www.raspberrypi.org/.

[7] «The JavaScript Object Notation (JSON) Data Interchange Format,» [En línea]. Available:

https://tools.ietf.org/html/rfc7159.

[8] «JSON Web Signature (JWS),» [En línea]. Available: https://tools.ietf.org/html/rfc7515.

[9] «JSON Web Encryption (JWE),» [En línea]. Available: https://tools.ietf.org/html/rfc7516.

[10] J. P. L. R. a. A. W. R. Chandra, «Beacon-Stuffing : Wi-Fi Without Associations,» Eighth IEEE

Workshop on Mobile Computing Systems and Applications, 2007. HotMobile 2007. , p.

53–57, 2007.

[11] «IEEE Standard for Information technology—Telecommunications and information

exchange between systems Local and metropolitan area networks—Specific

requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications».

[12] «Neighbor Discovery for IP version 6 (IPv6),» [En línea]. Available:

https://tools.ietf.org/html/rfc4861#page-8.

[13] N. I. o. S. a. Technology, «Secure Hash Standard (SHS),» March 2012.

[14] J. Martí, A. Queralt, D. Gasull, A. Barceló, J. J. Costa y T. Cortes, «dataClay: A distributed

data store for effective inter-player data sharing,» Journal of Systems and Software, vol.

131, pp. 129-145, 2017.

[15] «IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authenticator,» [En línea].

Available: http://w1.fi/hostapd/.

[16] «Open Hub,» [En línea]. Available: https://www.openhub.net/p/iw.

[17] «WHIRESHARK,» [En línea]. Available: https://www.wireshark.org/.

	Version History
	List of figures
	List of tables
	Executive Summary
	1. Introduction
	1.1 Introduction
	1.2 Purpose
	1.3 Glossary of Acronyms

	2. Summary of mF2C architecture for IT-1
	2.1 Survey of main Agent Controller Functionalities
	2.3 Security provisioning
	2.3.1. Controller Security Prototype
	2.3.2. Controller Security API

	3. Resource Management Design
	3.1 Discovery
	3.1.1 mF2C discovery in proximity
	3.1.2 mF2C general discovery framework

	3.2 Identification and Naming
	3.3 Categorization
	3.4 Policies
	3.4.1 Leader and backup node selection
	3.4.2. Discovery policies

	3.5 Data Management
	3.6 Monitoring
	3.7 Core Resource Management operation
	3.7.1 Workflow description

	4. Service Management Design
	4.1 Categorization
	4.2 Mapping
	4.3 Allocation
	4.4 QoS Provisioning

	5. User Management Design
	5.1 Profiling
	5.2 Sharing model
	5.3 QoS Enforcement

	6. Data Base Design
	6.1 Database schema
	6.2 Database Interface

	7. Interfaces Design
	7.1 Agent Controller Interfaces
	7.1.1 Diagrams centered in Agent Controller Package dependencies
	7.1.2. Agent Controller’s Class Diagram

	8. Illustrative Example
	8.1 Identification
	8.1.1 Registration
	8.1.2 Device ID calculation

	8.2 Discovery

	9. Conclusions
	Annex 1. Service Categorization
	The diagram below shows the service categorization represented as a class diagram already shown in Figure 10.
	References

